Journal of Computer Chemistry, Japan
Online ISSN : 1347-3824
Print ISSN : 1347-1767
ISSN-L : 1347-1767
速報
分子軌道エネルギーを説明変数とした機械学習による薬効予測
寺前 裕之三浦 優太色摩 光一玄 美燕高山 淳岡﨑 真理坂本 武史
著者情報
ジャーナル フリー HTML

2024 年 23 巻 3 号 p. 80-83

詳細
抄録

We constructed a mathematical model to predict the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging capacity (IC50) for recently synthesized ferulic acid derivatives by machine learning with molecular orbital energy as an explanatory variable and IC50 as an objective variable. We compared 96 regression models including xgbLinear and neuralnet included in R/caret package. We were able to construct IC50 prediction models for these new ferulic acids by using xgbLinear, M5, ppr, and neuralnet as regression methods.

Fullsize Image
著者関連情報
© 2024 日本コンピュータ化学会
前の記事
feedback
Top