Journal of Computer Chemistry, Japan
Online ISSN : 1347-3824
Print ISSN : 1347-1767
ISSN-L : 1347-1767

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Electronic Origin of Catalytic Nitric Oxide Reduction upon Small Rhodium and Copper Clusters
Ryoichi FUKUDA
著者情報
ジャーナル フリー HTML 早期公開

論文ID: 2018-0037

この記事には本公開記事があります。
詳細
Abstract

Both rhodium and copper show a catalytic activity for nitric oxide (NO) reduction; however, the reaction mechanisms can be different. Herein, we elucidate the difference in the NO reduction mechanisms between Rh and Cu clusters regarding the electronic structures using DFT computations and small cluster models involving four metal atoms. The computational results show that the dissociative adsorption proceeds on the Rh cluster with the reaction barrier of 33 kcal mol−1. The calculated heat of the reaction is almost zero. On the Cu cluster, the calculated reaction barrier reaches to 78 kcal mol−1 indicating that the dissociative adsorption hardly occurs. Instead of the dissociative adsorption, dimerization of NO initiates the catalytic NO reduction on Cu cluster. The calculated energy barrier for the dimerization is 8 kcal mol−1. The adsorbed NO dimer has a similar stability to co-adsorbed two NO molecules. In contrast, the dimerization hardly occurs on the Rh cluster; the reaction pathway is remarkably endothermic, and a stable adsorbed product is not found. The adsorption structures of NO can explain such differences. On Cu cluster, NO takes bent-nitrosyl conformation that acts as an electron acceptor. On Rh cluster, NO acts as an electron donor having linear-nitrosyl conformation.

Figures
Figure 1.

 The potential energy curves for N-O dissociative adsorption on Rh4 (open circles) and Cu4 (filled circles) clusters with representative molecular structures (blue; nitrogen, red: oxygen).

Figure 2.

 The potential energy curves for NO dimerization on Rh4 (open circles) and Cu4 clusters (filled circles) with representative molecular structures.

Figure 3.

 The isosurface plots (isovalue = 0.04) of several NBOs for bonding between metal and NO in Cu4(NO)2 (a, b) and Rh4(NO)2 (d, e, f) at the reactant structure and for N-N bond in Cu4(NO)2 (c) at the transition state structure.

Tables
Table 1  . The structural parameters (Å) and bond indices for Rh4NO and Cu4NO in reactant, product, and transition state (TS) structures.
Reactant TS Product
Structure
N-O 1.258 1.925 3.000
N-Rh 1.969 1.768 1.794
N-Rh 1.970 1.893 1.812
O-Rh 2.243 2.002 1.835
O-Rh 2.704 2.096 1.941
Bond indices
N-O 1.44 0.55 0.10
N-Rh 0.77 1.35 1.23
N-Rh 0.76 0.90 1.21
O-Rh 0.24 0.48 0.93
O-Rh 0.22 0.45 0.61
q(NO)a −0.443 −0.872 −1.00
Structure
N-O 1.242 2.300 3.549
N-Cu 1.928 1.908 1.786b
N-Cu 2.483 1.920
O-Cu 2.015 1.769 1.769b
Bond indices
N-O 1.49 0.35 0.08
N-Cu 0.48 0.54 0.63b
N-Cu 0.13 0.58
O-Cu 0.23 0.68 0.63b
q(NO)a −0.518 −0.988 −2.565

aNBO gross charge on NO moiety (in e). bAveraged value.

Table 2 . The structural parameters (Å and degrees) and bond indices for Rh4(NO)2 and Cu4(NO)2 in reactant, product, and transition state (TS) or intermediate (Int) structures.
Reactant TS/Int Product
Structure
N-N 3.655 2.000 1.400
N-Rh 1.787 1.938 2.121
N-Rh 1.787 1.938 1.918
N-O 1.158 1.179 1.223
N-O 1.158 1.179 1.226
Rh-N-O 163.6 123.0 122.7
Rh-N-O 163.6 123.0 139.9
Bond indices
N-N 0.06 0.296 1.07
N-Rh 1.24 0.80 0.37
N-Rh 1.24 0.80 0.69
N-O 1.84 1.77 1.55
N-O 1.84 1.77 1.49
q(ONNO)a 0.011 −0.270 −0.397
Structure
N-N 5.000 2.100 1.459
N-Cu 1.844 1.926 1.973
N-Cu 1.906 1.984 1.982
N-O 1.170 1.175 1.216
N-O 1.174 1.174 1.213
Cu-N-O 143.7 131.6 133.6
Cu-N-O 135.4 126.9 137.4
Bond indices
N-N 0.01 0.34 1.04
N-Cu 0.59 0.42 0.34
N-Cu 0.48 0.39 0.30
N-O 1.85 1.82 1.60
N-O 1.84 1.79 1.61
q(ONNO) a −0.341 −0.419 −0.534

aNBO gross charge on (NO)2 moiety (in e).

References
 
© 2018 Society of Computer Chemistry, Japan
feedback
Top