Abstract
カルサイトとその表面に特異的に吸着する DDGSDD モチーフの複合系,ハイドロキシアパタイトとESQES モチーフの複合系を対象に,フラグメント分子軌道法 (FMO 法) に基づく Pair Interaction Energy Decomposition Analysis (PIEDA) 解析を用いて,結晶-ペプチド間の相互作用エネルギーの成分解析を行った.さらに,PIEDA解析の結果や結晶-残基間の距離,残基の構造的特徴を特徴量として残基-結晶間の相互作用エネルギーの重回帰分析を行った.これらの結果を両複合系で比較したところ,カルサイト系では残基と近距離のフラグメントとの相互作用が,ハイドロキシアパタイト系では残基-結晶表面間の距離が,残基-結晶間相互作用において最も寄与が大きい特徴量であることが分かった.
Tables
Table 1. Result of IFIE and PIEDA analysis in calcite system
Residue | IFIE (kcal/mol) | ES (kcal/mol) | EX (kcal/mol) | CT (kcal/mol) | DI (kcal/mol) |
Asp1 | -8.54 | -6.76 | 3.87 | -2.98 | -2.67 |
Asp2 | -8.09 | -5.71 | 2.95 | -2.01 | -3.32 |
Gly3 | -10.76 | -7.95 | 2.11 | -2.58 | -2.34 |
Ser4 | -19.67 | -19.18 | 8.27 | -3.21 | -5.55 |
Asp5 | -63.05 | -58.82 | 3.89 | -4.20 | -3.92 |
Asp6 | -79.37 | -77.32 | 15.54 | -9.25 | -8.34 |
Total | -189.5 | -175.74 | 36.63 | -24.23 | -26.14 |
Table 2. Result of comparative analysis (Asp2, Asp5) in calcite system
Residue | Asp2 | Asp5 |
IFIE (kcal/mol) | -8.09 | -63.05 |
IFIE with short range fragments (kcal/mol) | -24.54 | -82.42 |
Distance between residue and surface of crystal (Å) | 4.18 | 3.29 |
EX (kcal/mol) | 2.95 | 3.89 |
CT (kcal/mol) | -2.01 | -4.20 |
DI (kcal/mol) | -3.32 | -3.92 |
Table 3. Result of regression analysis in calcite system
Explained variables | Partial regression coefficient |
IFIE with short range fragments | 0.411 |
Number of Carboxylic groups | 0.353 |
DI | 0.280 |
CT | 0.231 |
Number of Amino groups | 0.138 |
Charge | 0.131 |
Distance between residue and surface of crystal | 0.089 |
Number of Hydroxy groups | 0.048 |
q | 0.037 |
Table 4. Result of IFIE and PIEDA analysis in hydroxyapatite system
Residue | IFIE (kcal/mol) | ES (kcal/mol) | EX (kcal/mol) | CT (kcal/mol) | DI (kcal/mol) |
Glu1 | -38.59 | -40.93 | 37.27 | -18.37 | -16.56 |
Ser2 | -27.83 | -31.77 | 0.00 | 4.48 | -0.54 |
Gln3 | -39.94 | -42.32 | 17.53 | -7.63 | -7.52 |
Glu4 | -70.90 | -65.59 | 15.31 | -11.57 | -9.05 |
Ser5 | -94.08 | -108.49 | 49.23 | -19.91 | -14.91 |
Total | -280.30 | -289.10 | 119.34 | -61.96 | -48.58 |
Table 5. Result of comparative analysis (Ser2, Ser5) in hydroxyapatite system
Residue | Ser2 | Ser5 |
IFIE (kcal/mol) | -27.83 | -94.08 |
IFIE with short range fragments (kcal/mol) | -44.60 | -94.88 |
Distance between residue and surface of crystal (Å) | 5.56 | 1.81 |
EX (kcal/mol) | 0.00 | 49.23 |
CT (kcal/mol) | 4.48 | -19.91 |
DI (kcal/mol) | -0.54 | -14.91 |
Table 6. Result of regression analysis in hydroxyapatite system
Explained variables | Partial regression coefficient |
Distance between residue and surface of crystal | 1.430 |
CT | 1.016 |
DI | 0.865 |
Number of Carboxylic groups | 0.689 |
q | 0.643 |
Charge | 0.457 |
Number of Hydroxy groups | 0.442 |
IFIE with short range fragments | 0.190 |
Number of Amino groups | 0.091 |
Table 7. Result of volume and polarizability
| CO32- | PO43- |
Volume (bohr3) | 493.0 | 681.1 |
Polarizability (Å) | 30.8 | 52.8 |
参考文献
- [1]
B. A. Gotliv, N. Kessler, J. L. Sumerel, D. E. Morse, N. Tuross, L. Addadi, S. Weiner, ChemBioChem, 6, 304 (2005). doi:10.1002/cbic.200400221 PMID:15678422
- [2]
G. He, T. Dahl, A. Veis, A. George, Nat. Mater., 2, 552 (2003). doi:10.1038/nmat945 PMID:12872163
- [3]
D. G. Fedorov, K. Kitaura, The FRAGMENT MOLECULAR ORBITAL METHOD: Practical Applications to Large Molecular Systems (CRC Press, Boca Raton, 2009).
- [4]
K. Kitaura, E. Ikeo, T. Asada, T. Nakano, M. Uebayasi, Chem. Phys. Lett., 313, 701 (1999). doi:10.1016/S0009-2614(99)00874-X
- [5]
D. G. Fedorov, T. Nagata, K. Kitaura, Phys. Chem. Chem. Phys., 14, 7562 (2012). doi:10.1039/c2cp23784a PMID:22410762
- [6]
Y. Mochizuki, K. Fukuzawa, A. Kato, S. Tanaka, K. Kitaura, T. Nakano, Chem. Phys. Lett., 410, 247 (2005). doi:10.1016/j.cplett.2005.05.079
- [7]
K. Kato, K. Fukuzawa, Y. Mochizuki, Chem. Phys. Lett., 629, 58 (2015). doi:10.1016/j.cplett.2015.03.057
- [8]
K. Kato, K. Fukuzawa, Y. Mochizuki, Jpn. J. Appl. Phys., (to be published)
- [9]
D. G. Fedorov, K. Kitaura, J. Comput. Chem., 28, 222 (2007). doi:10.1002/jcc.20496 PMID:17109433
- [10]
T. Tsukamoto, K. Kato, A. Kato, T. Nakano, Y. Mochizuki, K. Fukuzawa, J. Comput. Chem. Jpn., 14, 1 (2015). doi:10.2477/jccj.2014-0039
- [11]
F. Heberling, P. Eng, M. A. Denecke, J. Lützenkirchen, H. Geckeis, Phys. Chem. Chem. Phys., 16, 12782 (2014). doi:10.1039/C4CP00672K PMID:24836466
- [12]
F. Heberling, T. P. Trainor, J. Lützenkirchen, P. Eng, M. A. Denecke, D. Bosbach, J. Colloid Interface Sci., 354, 843 (2011). doi:10.1016/j.jcis.2010.10.047 PMID:21087772
- [13]
https://www.chemcomp.com/.
- [14]
http://ambermd.org/.
- [15]
M. Corno, A. Rimola, V. Bolis, P. Ugliengo, Phys. Chem. Chem. Phys., 12, 6309 (2010). doi:10.1039/c002146f PMID:20485772
- [16]S. Tanaka, Y. Mochizuki, Y. Komeiji, Y. Okiyama, K. Fukuzawa, Phys. Chem. Chem. Phys., 16, 10310 (2014). P doi:10.1039/C4CP00316K
- [17]
Scikit-learn <http://www.scikit-learn.org/>. [1]
- [18]
Gaussian16 <http://www.gaussian.com/>.