Article ID: 2021-0025
本稿では,著者らが開発してきた大規模量子化学計算手法である分割統治(DC)法において,バッファ領域を自動的に決定する手法について述べる.バッファ領域は,DC法の近似に伴い導入される誤差に直接関係し,その選択はエネルギー精度を決める要である.繰り返し計算であるDC Hartree-Fock法では,二層の階層構造を持つバッファ領域を用いる.外側バッファ領域の各原子からのエネルギー寄与を概算し,エネルギー閾値に基づいてバッファ領域をその方向に拡大すべきか否かを判断することで,バッファ領域を徐々に拡大していく.一方,繰り返し計算ではない2次Møller-Plesset摂動計算に対するDC法では,元のバッファ領域内の各原子に対してエネルギー寄与を概算し,与えられたエネルギー閾値以上の寄与を持つ原子のみをバッファ領域に残す.いずれの手法も,エネルギーに基づく1つの閾値だけをパラメータとして,ほぼ一定の精度でエネルギーを計算できることを実証した.
A scheme to automatically determine the buffer region in the divide-and-conquer (DC) large-scale quantum chemical method is introduced. The buffer region directly relates to the error introduced by the DC method. In the iterative DC Hartree-Fock procedure, the automatic scheme adopts two-layered buffer region and gradually enlarges the buffer region by evaluating the energy contribution from the outer buffer region and determining whether the buffer region should be enlarged or not based on the energy-based threshold. On the other hand, in the non-iterative DC second-order Møller-Plesset perturbation calculation, the energy contribution is approximately estimated for the atoms in the buffer region and only those atoms that contribute more than an energy-based threshold are left in the buffer region. We demonstrated that both methods achieve almost constant accuracy in the energy using only one energy-based threshold as a parameter.
Structure of central, inner buffer, and outer buffer regions in the two-layer DC method.
Expansion of the buffer region for Gly10 subsystem in Trp-cage system. (a) initial
buffer region for
System-size dependence of the CPU time of the evaluation of
cis-trans isomerization of polyacetylene C100H102.
Energy /Eh | (Diff.)/μEh atom−1 | |||
4.0 | 5.0 | −7439.551778 | (+0.04) | 9.79 |
4.5 | 5.5 | −7439.551761 | (+0.09) | 9.65 |
5.0 | 6.0 | −7439.551722 | (+0.23) | 9.64 |
Standard HF | −7439.551790 |
MaxAD/Eh bohr−1 | MAD /Eh bohr−1 | |||||
/Å | /Å | actual | estimated | actual | estimated | |
3.5 | 4.5 | 0.5021 | 0.2697 | 0.1032 | 0.0208 | |
4.0 | 5.0 | 0.5795 | 0.0998 | 0.0808 | 0.0072 | |
4.5 | 5.5 | 0.0664 | 0.0076 | 0.0107 | 0.0007 | |
5.0 | 6.0 | 0.0201 | 0.0010 | 0.0037 | 0.0001 | |
5.5 | 6.5 | 0.0160 | 0.0002 | 0.0031 | 0.0000 |
Energy error /Eh | MaxAD of Pulay term/Eh bohr−1 | MAD of Pulay term/Eh bohr−1 | |||||||
Actual | estimated | actual | Estimated | actual | estimated | ||||
3.5 | 4.5 | +0.0553 | +0.0540 | 0.0265 | 0.0317 | 0.0043 | 0.0027 | ||
4.0 | 5.0 | −0.0397 | −0.0511 | 0.0188 | 0.0209 | 0.0026 | 0.0014 | ||
4.5 | 5.5 | +0.0027 | +0.0022 | 0.0021 | 0.0007 | 0.0003 | 0.0002 | ||
5.0 | 6.0 | +0.0002 | −0.0007 | 0.0007 | 0.0007 | 0.0001 | 0.0001 | ||
5.5 | 6.5 | +0.0001 | −0.0003 | 0.0006 | 0.0003 | 0.0001 | 0.0000 |
DC-MP2 method | Total energy /Eh | Isomerization energy | |
trans | cis | / kcal mol−1 | |
−3858.088 | −3857.721 | 229.9 | |
−3858.094 | −3857.721 | 234.0 | |
−3858.098 | −3857.722 | 235.8 | |
−3858.094 | −3857.721 | 234.1 | |
−3858.098 | −3857.722 | 235.9 | |
Standard MP2 | −3858.100 | −3857.722 | 237.2 |