Abstract
本稿では,著者らが開発してきた大規模量子化学計算手法である分割統治(DC)法において,バッファ領域を自動的に決定する手法について述べる.バッファ領域は,DC法の近似に伴い導入される誤差に直接関係し,その選択はエネルギー精度を決める要である.繰り返し計算であるDC
Hartree-Fock法では,二層の階層構造を持つバッファ領域を用いる.外側バッファ領域の各原子からのエネルギー寄与を概算し,エネルギー閾値に基づいてバッファ領域をその方向に拡大すべきか否かを判断することで,バッファ領域を徐々に拡大していく.一方,繰り返し計算ではない2次Møller-Plesset摂動計算に対するDC法では,元のバッファ領域内の各原子に対してエネルギー寄与を概算し,与えられたエネルギー閾値以上の寄与を持つ原子のみをバッファ領域に残す.いずれの手法も,エネルギーに基づく1つの閾値だけをパラメータとして,ほぼ一定の精度でエネルギーを計算できることを実証した.
Translated Abstract
A scheme to automatically determine the buffer region in the divide-and-conquer (DC)
large-scale quantum chemical method is introduced. The buffer region directly relates to
the error introduced by the DC method. In the iterative DC Hartree-Fock procedure, the
automatic scheme adopts two-layered buffer region and gradually enlarges the buffer region
by evaluating the energy contribution from the outer buffer region and determining whether
the buffer region should be enlarged or not based on the energy-based threshold. On the
other hand, in the non-iterative DC second-order Møller-Plesset perturbation calculation,
the energy contribution is approximately estimated for the atoms in the buffer region and
only those atoms that contribute more than an energy-based threshold are left in the
buffer region. We demonstrated that both methods achieve almost constant accuracy in the
energy using only one energy-based threshold as a parameter.
Tables
Table 1.
Initial buffer-size dependence of the automated DC-HF energy for the Trp-cage
system with 6-31G* basis set.
r
b
in
/
Å
|
r
b
out
/
Å
|
Energy /Eh |
(Diff.)/μEh
atom−1 |
⟨
l
local
HF,
α
⟩
/Å |
4.0 |
5.0 |
−7439.551778 |
(+0.04) |
9.79 |
4.5 |
5.5 |
−7439.551761 |
(+0.09) |
9.65 |
5.0 |
6.0 |
−7439.551722 |
(+0.23) |
9.64 |
Standard HF |
−7439.551790 |
|
|
Table 2.
Buffer-size dependence of the actual and estimated errors in the one-electron part
of the Hellmann-Feynman term of the HF energy gradient of
α-helix
glycine oligomer Gly
10.
r
b
in
|
r
b
out
|
MaxAD/Eh
bohr−1 |
|
MAD /Eh
bohr−1 |
/Å |
/Å |
actual |
estimated |
|
actual |
estimated |
3.5 |
4.5 |
0.5021 |
0.2697 |
|
0.1032 |
0.0208 |
4.0 |
5.0 |
0.5795 |
0.0998 |
|
0.0808 |
0.0072 |
4.5 |
5.5 |
0.0664 |
0.0076 |
|
0.0107 |
0.0007 |
5.0 |
6.0 |
0.0201 |
0.0010 |
|
0.0037 |
0.0001 |
5.5 |
6.5 |
0.0160 |
0.0002 |
|
0.0031 |
0.0000 |
Table 3.
Buffer-size dependence of the actual and estimated errors in the HF energy and the
Pulay term of the HF energy gradient of
α-helix glycine oligomer
Gly
10. The standard HF energy is −2142.6879
Eh.
r
b
in
/
Å
|
r
b
out
/
Å
|
Energy error
/Eh |
|
MaxAD of Pulay
term/Eh bohr−1 |
|
MAD of Pulay
term/Eh bohr−1 |
Actual |
estimated |
|
actual |
Estimated |
|
actual |
estimated |
3.5 |
4.5 |
+0.0553 |
+0.0540 |
|
0.0265 |
0.0317 |
|
0.0043 |
0.0027 |
4.0 |
5.0 |
−0.0397 |
−0.0511 |
|
0.0188 |
0.0209 |
|
0.0026 |
0.0014 |
4.5 |
5.5 |
+0.0027 |
+0.0022 |
|
0.0021 |
0.0007 |
|
0.0003 |
0.0002 |
5.0 |
6.0 |
+0.0002 |
−0.0007 |
|
0.0007 |
0.0007 |
|
0.0001 |
0.0001 |
5.5 |
6.5 |
+0.0001 |
−0.0003 |
|
0.0006 |
0.0003 |
|
0.0001 |
0.0000 |
Table 4.
cis-
trans isomerization energy of polyacetylene
C
100H
102 evaluated at (DC-)MP2/6-31G* level.
DC-MP2 method |
Total energy
/Eh |
Isomerization energy |
|
trans |
cis |
/ kcal mol−1 |
r
b
MP2
= 6 Å |
−3858.088 |
−3857.721 |
229.9 |
r
b
MP2
= 8 Å |
−3858.094 |
−3857.721 |
234.0 |
r
b
MP2
= 10 Å |
−3858.098 |
−3857.722 |
235.8 |
e
thresh
corr
= 10 μEh |
−3858.094 |
−3857.721 |
234.1 |
e
thresh
corr
= 0.1 μEh |
−3858.098 |
−3857.722 |
235.9 |
Standard MP2 |
−3858.100 |
−3857.722 |
237.2 |
参考文献
- [1] M. Kobayashi, T. Akama, H.
Nakai, J. Comput. Chem. Jpn., 8, 1 (2009). doi:10.2477/jccj.H2027
- [2] T. Akama, M. Kobayashi, H.
Nakai, J. Comput. Chem., 28, 2003 (2007). doi:10.1002/jcc.20707
PMID:17455367
- [3] M. Kobayashi, H. Nakai, in
Linear-Scaling Techniques in Computational Chemistry and Physics: Methods and Applications
(Springer, Dordrecht), pp. 97-127 (2011).
- [4] W. Yang, Phys. Rev. Lett.,
66, 1438 (1991). doi:10.1103/PhysRevLett.66.1438 PMID:10043209
- [5] W. Yang, T. S. Lee, J. Chem.
Phys., 103, 5674 (1995). doi:10.1063/1.470549
- [6] A. Imamura, Y. Aoki, K.
Maekawa, J. Chem. Phys., 95, 5419 (1991). doi:10.1063/1.461658
- [7] F. L. Gu, B. Kirtman, Y. Aoki,
in Linear-Scaling Techniques in Computational Chemistry and Physics: Methods and
Applications (Springer, Dordrecht), pp. 175-198 (2011).
- [8] K. Kitaura, E. Ikeo, T.
Asada, T. Nakano, M. Uebayasi, Chem. Phys. Lett., 313, 701 (1999).
doi:10.1016/S0009-2614(99)00874-X
- [9]D. G. Fedorov and K.
Kitaura, The fragment molecular orbital method: practical applications to large molecular
systems (CRC Press, Baca Raton, 2009).
- [10] D. G. Fedorov, K. Kitaura,
Chem. Phys. Lett., 433, 182 (2006). doi:10.1016/j.cplett.2006.10.052
- [11] T. Nakano, Y. Mochizuki, K.
Yamashita, C. Watanabe, K. Fukuzawa, K. Segawa, Y. Okiyama, T. Tsukamoto, S. Tanaka, Chem.
Phys. Lett., 523, 128 (2012). doi:10.1016/j.cplett.2011.12.004
- [12] M. Kobayashi, Y. Imamura, H.
Nakai, J. Chem. Phys., 127, 074103 (2007). doi:10.1063/1.2761878
PMID:17718602
- [13] M. Kobayahsi, H. Nakai, J.
Chem. Phys., 129, 044103 (2008). doi:10.1063/1.2956490 PMID:18681630
- [14] M. Kobayashi, H. Nakai, J.
Chem. Phys., 131, 114108 (2009). doi:10.1063/1.3211119 PMID:19778101
- [15] T. Yoshikawa, M. Kobayashi,
H. Nakai, Int. J. Quantum Chem., 113, 218 (2013). doi:10.1002/qua.24093
- [16] M. Kobayashi, H. Nakai, Int.
J. Quantum Chem., 109, 2227 (2009). doi:10.1002/qua.22111
- [17] M. Kobayashi, T. Fujimori,
T. Taketsugu, J. Comput. Chem., 39, 909 (2018). doi:10.1002/jcc.25174
PMID:29399822
- [18] T. Fujimori, M. Kobayashi,
T. Taketsugu, J. Comput. Chem., 42, 620 (2021). doi:10.1002/jcc.26486
PMID:33534916
- [19] M. Kobayashi, H. Nakai,
Phys. Chem. Chem. Phys., 14, 7629 (2012). doi:10.1039/c2cp40153c
PMID:22513877
- [20] S. L. Dixon, K. M. Merz,
Jr., J. Chem. Phys., 107, 879 (1997). doi:10.1063/1.474386
- [21] P. Pulay, Mol. Phys., 17,
197 (1969). doi:10.1080/00268976900100941
- [22] M. Kobayashi, T. Kunisada,
T. Akama, D. Sakura, H. Nakai, J. Chem. Phys., 134, 034105 (2011). doi:10.1063/1.3524337
PMID:21261328
- [23] M. Kobayashi, T. Touma, H.
Nakai, J. Chem. Phys., 136, 084108 (2012). doi:10.1063/1.3687341
PMID:22380033
- [24] T. Yoshikawa, J. Yoshihara,
H. Nakai, J. Chem. Phys., 152, 024102 (2020). doi:10.1063/1.5124909
PMID:31941302
- [25] R. K. Nesbet, in Advances in
Chemical Physics (John Wiley & Sons, West Sussex) vol. 14, pp. 1-34
(1969).
- [26] H. Nakai, Chem. Phys. Lett.,
363, 73 (2002). doi:10.1016/S0009-2614(02)01151-X
- [27] M. Kobayashi, T. Taketsugu,
Theor. Chem. Acc., 134, 107 (2015). doi:10.1007/s00214-015-1710-y
- [28] M. Häser, Theor. Chim. Acta,
87, 147 (1993). doi:10.1007/BF01113535
- [29] M. Kobayashi, H. Nakai,
Chem. Phys. Lett., 420, 250 (2006). doi:10.1016/j.cplett.2005.12.088