Journal of Computer Chemistry, Japan
Online ISSN : 1347-3824
Print ISSN : 1347-1767
ISSN-L : 1347-1767

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

分割統治量子化学計算におけるバッファ領域決定の自動化
小林 正人藤森 俊和武次 徹也
著者情報
ジャーナル フリー HTML 早期公開

論文ID: 2021-0025

この記事には本公開記事があります。
詳細
Abstract

本稿では,著者らが開発してきた大規模量子化学計算手法である分割統治(DC)法において,バッファ領域を自動的に決定する手法について述べる.バッファ領域は,DC法の近似に伴い導入される誤差に直接関係し,その選択はエネルギー精度を決める要である.繰り返し計算であるDC Hartree-Fock法では,二層の階層構造を持つバッファ領域を用いる.外側バッファ領域の各原子からのエネルギー寄与を概算し,エネルギー閾値に基づいてバッファ領域をその方向に拡大すべきか否かを判断することで,バッファ領域を徐々に拡大していく.一方,繰り返し計算ではない2次Møller-Plesset摂動計算に対するDC法では,元のバッファ領域内の各原子に対してエネルギー寄与を概算し,与えられたエネルギー閾値以上の寄与を持つ原子のみをバッファ領域に残す.いずれの手法も,エネルギーに基づく1つの閾値だけをパラメータとして,ほぼ一定の精度でエネルギーを計算できることを実証した.

Translated Abstract

A scheme to automatically determine the buffer region in the divide-and-conquer (DC) large-scale quantum chemical method is introduced. The buffer region directly relates to the error introduced by the DC method. In the iterative DC Hartree-Fock procedure, the automatic scheme adopts two-layered buffer region and gradually enlarges the buffer region by evaluating the energy contribution from the outer buffer region and determining whether the buffer region should be enlarged or not based on the energy-based threshold. On the other hand, in the non-iterative DC second-order Møller-Plesset perturbation calculation, the energy contribution is approximately estimated for the atoms in the buffer region and only those atoms that contribute more than an energy-based threshold are left in the buffer region. We demonstrated that both methods achieve almost constant accuracy in the energy using only one energy-based threshold as a parameter.

Figures
Fig. 1.

 Structure of central, inner buffer, and outer buffer regions in the two-layer DC method.

Fig. 2.

 Expansion of the buffer region for Gly10 subsystem in Trp-cage system. (a) initial buffer region for r b in = 3.5 Å ; (b) final DC-HF buffer region with e thresh SCF = 0.1  μ E h atom 1 ; (c) final DC-MP2 buffer region with e thresh corr = 10  μ E h atom 1 .

Fig. 3.

 System-size dependence of the CPU time of the evaluation of e B α for polyacetylene chain system containing 2n carbon atoms C2nH2n+2. The initial inner and outer buffer sizes for the DC-HF calculation were fixed at r b in =5.0 Å and r b out = 6.5 Å, respectively.

Fig. 4.

cis-trans isomerization of polyacetylene C100H102.

Tables
Table 1.  Initial buffer-size dependence of the automated DC-HF energy for the Trp-cage system with 6-31G* basis set.
r b in / Å r b out / Å Energy /Eh (Diff.)/μEh atom−1 l local HF, α /Å
4.0 5.0 −7439.551778 (+0.04) 9.79
4.5 5.5 −7439.551761 (+0.09) 9.65
5.0 6.0 −7439.551722 (+0.23) 9.64
Standard HF −7439.551790
Table 2.  Buffer-size dependence of the actual and estimated errors in the one-electron part of the Hellmann-Feynman term of the HF energy gradient of α-helix glycine oligomer Gly10.
r b in r b out MaxAD/Eh bohr−1 MAD /Eh bohr−1
actual estimated actual estimated
3.5 4.5 0.5021 0.2697 0.1032 0.0208
4.0 5.0 0.5795 0.0998 0.0808 0.0072
4.5 5.5 0.0664 0.0076 0.0107 0.0007
5.0 6.0 0.0201 0.0010 0.0037 0.0001
5.5 6.5 0.0160 0.0002 0.0031 0.0000
Table 3.  Buffer-size dependence of the actual and estimated errors in the HF energy and the Pulay term of the HF energy gradient ofα-helix glycine oligomer Gly10. The standard HF energy is −2142.6879 Eh.
r b in / Å r b out / Å Energy error /Eh MaxAD of Pulay term/Eh bohr−1 MAD of Pulay term/Eh bohr−1
Actual estimated actual Estimated actual estimated
3.5 4.5 +0.0553 +0.0540 0.0265 0.0317 0.0043 0.0027
4.0 5.0 −0.0397 −0.0511 0.0188 0.0209 0.0026 0.0014
4.5 5.5 +0.0027 +0.0022 0.0021 0.0007 0.0003 0.0002
5.0 6.0 +0.0002 −0.0007 0.0007 0.0007 0.0001 0.0001
5.5 6.5 +0.0001 −0.0003 0.0006 0.0003 0.0001 0.0000
Table 4.   cis-trans isomerization energy of polyacetylene C100H102 evaluated at (DC-)MP2/6-31G* level.
DC-MP2 method Total energy /Eh Isomerization energy
trans cis / kcal mol−1
r b MP2 = 6 Å −3858.088 −3857.721 229.9
r b MP2 = 8 Å −3858.094 −3857.721 234.0
r b MP2 = 10 Å −3858.098 −3857.722 235.8
e thresh corr = 10 μEh −3858.094 −3857.721 234.1
e thresh corr = 0.1 μEh −3858.098 −3857.722 235.9
Standard MP2 −3858.100 −3857.722 237.2
参考文献
 
© 2021 日本コンピュータ化学会
feedback
Top