JOURNAL OF CHEMICAL ENGINEERING OF JAPAN
Online ISSN : 1881-1299
Print ISSN : 0021-9592
DRAG COEFFICIENTS AND MASS TRANSFER IN THE CONTINUOUS PHASE FOR SINGLE DROPS AT LOW REYNOLDS NUMBERS
MANABU YAMAGUCHITAKASHI KATAYAMAKORETSUNE UEYAMA
著者情報
ジャーナル フリー

1974 年 7 巻 5 号 p. 334-341

詳細
抄録
The stream functions approximately satisfying equations of motion for laminar flow around a single drop moving in a viscous fluid are numerically solved in the low Reynolds number region by use of Galerkin''s method in a way similar to that of Hamielec et al..
The accuracy of the results obtained is discussed both for the drag coefficient and for mass transfer in the continuous phase and is compared with experimental data from the literature. As a consequence, the approximate stream functions assumed in this work show good agreement with the experimental data from the literature in the range of Reynolds numbers less than twenty.
An equation of mass transfer rate in the continuous phase for a drop with moving surface is proposed for the condition that the viscosity ratio is less than about three and the Reynolds number is less than twenty.
著者関連情報
© The Society of Chemical Engineers, Japan
前の記事 次の記事
feedback
Top