Journal of the Ceramic Society of Japan
Online ISSN : 1348-6535
Print ISSN : 1882-0743
ISSN-L : 1348-6535
Special Article: The 67th CerSJ Awards for Academic Achievements in Ceramic Science and Technology: Review
Oxide ion conductivity in defect perovskite, Pr2NiO4 and its application for solid oxide fuel cells
Tatsumi ISHIHARA
著者情報
ジャーナル フリー

2014 年 122 巻 1423 号 p. 179-186

詳細
抄録

Oxide ion conductivity in defect perovskite, mainly Pr2NiO4 with K2NiF4 structure, was studied in details. Defect perovskite oxide consists of perovskite block connected series to oxygen deficient block and although it is known that oxygen deficient block traps mobile oxide ion in lattice, interstitial oxygen introduced at rock salt block in Pr2NiO4 shows high mobility resulting in the high oxide ion conductivity. Oxide ion conductivity is much increased by doping Cu and Ga for Ni site and Pr deficient. The observed oxide ion conductivity was high like log (σ/Scm−1) = −0.25 at 1173 K. Conducting property of Pr1.91Ni0.75Cu0.21Ga0.05O4(PNCG)/Ce0.8Sm0.2O2(SDC) nano laminated film was further studied and the conductivity was much increased by formation of residual strain and the ion blocking method shows the transport number of the laminated film is almost unity and so high conductivity of PNCG/SDC laminated film could be assigned to pure oxide ion. Application of PNCG for anode of SOFC was further studied and it was found that surface activity of Pr2NiO4 doped with Cu and Ni shows high and so superior cathodic property was achieved at low temperature by mixing Pr2NiO4 with SDC. The maximum power density of the cell using LaGaO3 thin film electrolyte was achieved at 0.12 W/cm2 at 673 K.

著者関連情報
© 2014 The Ceramic Society of Japan
前の記事 次の記事
feedback
Top