Journal of the Ceramic Society of Japan
Online ISSN : 1348-6535
Print ISSN : 1882-0743
ISSN-L : 1348-6535
Regular Articles: Special Articles: The 70th CerSJ Awards for Academic Achievements in Ceramic Science and Technology: Review
Mass transfer in polycrystalline alumina under oxygen potential gradients at high temperatures
ジャーナル フリー

2016 年 124 巻 10 号 p. 1100-1109


The mass-transfer mechanisms of polycrystalline alumina with and without oxygen reactive elements (REs) such as Ln (Y and Lu) and Hf were investigated by evaluation of the oxygen permeability through alumina wafers, which served as a model for alumina scale, at accelerated temperatures up to 1923 K. Oxygen permeation proceeded via grain boundary (GB) diffusion of oxygen from the higher oxygen partial pressure [PO2(hi)] surface side to the lower PO2 [PO2(lo)] surface side, along with the simultaneous GB diffusion of aluminum in the opposite direction, maintaining the Gibbs–Duhem relationship. The chemical potentials, GB diffusion coefficients, and fluxes of oxygen and aluminum in alumina wafers with applied oxygen potential gradients (dμO) were calculated from the oxygen permeability constants. The fluxes of oxygen and aluminum at the outflow side of the wafer were significantly larger than those at the inflow side. Ln and Hf segregation at the GBs selectively reduced the diffusivity of oxygen and aluminum, respectively. Thus, the mesoscopic dopant arrangements, which were selected by taking into consideration the behavior of the diffusion species and the role of dopants, enabled the alumina layers to have enhanced oxygen shielding capability at high temperatures. Furthermore, the GB diffusion data derived from the oxygen permeation experiments were compared to those for alumina scale formed by the so-called two-stage oxidation of alumina-forming alloys.

© 2016 The Ceramic Society of Japan
前の記事 次の記事