Journal of the Ceramic Society of Japan
Online ISSN : 1348-6535
Print ISSN : 1882-0743
ISSN-L : 1348-6535
Regular Issue: Notes
Search for oxide glass compositions using Bayesian optimization with elemental-property-based descriptors
Kensaku NAKAMURANaoya OTANITetsuya KOIKE
著者情報
ジャーナル オープンアクセス

2020 年 128 巻 8 号 p. 569-572

詳細
抄録

Our study shows that machine learning technique, Bayesian optimization (BO) can efficiently find high-refractive-index glasses from a large number of candidate compositions using data from the INTERGLAD database. The effect of the parameters (i.e., descriptors) input to the BO algorithm on search performance is described. The results show that elemental-property-based (EPB) descriptors, recently applied in materials science, are more effective than the component-amount-based ones traditionally used in the study of glass. The results suggest that BO with EPB descriptors can accelerate the search for glass compositions with desirable properties.

著者関連情報
© 2020 The Ceramic Society of Japan

この記事はクリエイティブ・コモンズ [表示 4.0 国際]ライセンスの下に提供されています。
https://creativecommons.org/licenses/by/4.0/deed.ja
前の記事 次の記事
feedback
Top