Journal of the Ceramic Society of Japan
Online ISSN : 1348-6535
Print ISSN : 1882-0743
ISSN-L : 1348-6535
Special Articles: The 75th CerSJ Awards for Academic Achievements in Ceramic Science and Technology: Review
Materials informatics for discovery of ion conductive ceramics for batteries
Masanobu NAKAYAMA
著者情報
ジャーナル オープンアクセス

2021 年 129 巻 6 号 p. 286-291

詳細
抄録

In this review, we introduce our work in the field of materials informatics for the prediction of ionic conduction properties in inorganic crystalline solids. Rational material development based on information-derived prediction of the ionic conductivity for the materials listed in the crystal structure database is attractive to reduce processing time and labor costs. For this purpose, the development of general descriptors and a sufficient volume of ionic conductivity datasets are required. As an example, herein we describe machine learning regression and Bayes optimization schemes and their results by using histogram descriptors and a bond valence-based force field approach.

著者関連情報
© 2021 The Ceramic Society of Japan

この記事はクリエイティブ・コモンズ [表示 4.0 国際]ライセンスの下に提供されています。
https://creativecommons.org/licenses/by/4.0/deed.ja
前の記事 次の記事
feedback
Top