Journal of the Ceramic Society of Japan
Online ISSN : 1348-6535
Print ISSN : 1882-0743
ISSN-L : 1348-6535
Regular Issue: Special Article-Academic Achievements: The 77th CerSJ Awards for Academic Achievements in Ceramic Science and Technology: Review
Silicon nitride as a biomaterial
Giuseppe Pezzotti
著者情報
ジャーナル オープンアクセス

2023 年 131 巻 8 号 p. 398-428

詳細
抄録

Three decades of research in the last century developed silicon nitride (Si3N4) as one of the strongest and toughest ceramic material for structural applications; but in this century, we newly discovered its gifted surface biochemistry. In an aqueous environment, Si3N4 undergoes surface hydrolysis with the slow but continuous elution of both silicon and nitrogen. A unique environment is created, which greatly enhances healing of soft and osseous tissues, inhibits bacterial biofilm formation, and eradicates viruses. The discovery of Si3N4’s biochemistry opens new paths in a wide array of different disciplines inside and outside of the physical body, including orthopedics, dentistry, virology, agronomy, and environmental remediation. In the biomedical field, it paves the way for a new generation of monolithic, composite, or coated implants for bone healing, including spinal arthrodesis, joint arthroplasty, craniomaxillofacial and dental devices. This review describes Si3N4’s surface chemistry in an aqueous environment in comparison with oxide ceramics. It discusses the pH-dependent elution kinetics of ammonia and ammonium as the main phenomenon behind its unparalleled behavior and demonstrates its friendly nature to mammalian cells while concurrently lysing invasive pathogens. Finally, a wider perspective is offered for future applications of Si3N4 in disease diagnosis and therapies, personal healthcare, agriculture, food and water safety, and environmental protection.

著者関連情報
© 2023 The Ceramic Society of Japan

この記事はクリエイティブ・コモンズ [表示 4.0 国際]ライセンスの下に提供されています。
https://creativecommons.org/licenses/by/4.0/deed.ja
前の記事 次の記事
feedback
Top