Journal of Chemical Software
Online ISSN : 1883-8359
Print ISSN : 0918-0761
ISSN-L : 0918-0761
Original Papers
Extraction of Chemical Parameter Characterizing the Upper, Middle and Lower Stream by Principal Component Analysis and Neural Network– The Case of Tamagawa River, Tokyo, Japan –
Junko KAMBETomoko FUKUDAUmpei NAGASHIMATomoo AOYAMA
Author information
JOURNALS FREE ACCESS

2002 Volume 8 Issue 1 Pages 27-36

Details
Abstract

We attempted to extract chemical parameter characterizing the upper, middle and lower stream by the principal component and the analysis of differential coefficients of input parameter for perceptron type neural network with three layers. The analysis of differential coefficients of input parameter for perceptron type neural network was developed by Aoyama [2] and was newly equipped into a neural network simulator Neco. The data used are 12 chemical parameters at 17 points along the main stream of the Tamagawa river in Tokyo, Japan, for 1997-1999 [3].
  The K-L plot of the first and second principal components (Figure 4) well divides 17 points into three groups corresponding to the three regions: upper, middle and lower streams, respectively. From results of the analysis of differential coefficients of input parameter for perceptron type neural network, Cl-, COND and NH4-N have relatively large differential coefficients and divide middle and lower streams. DO and pH are large in upper stream of Tamagawa river (Figure 5). The first principal component classifies well two groups: upper and middle-lower streams on the K-L plots. This result suggests that the water contamination is more drastic in the midstream of Tamagawa river than downstream. The water contamination in midstream should be decreased for keeping Tamagawa river clean.

Information related to the author
© 2002 by the Chemical Software Society of Japan
Previous article Next article
feedback
Top