Abstract
To obtain the knowledge about the corrosion ability and its mechanism as a target the soil environment microorganisms, lake mud was cultured with metallic iron. As a result, corrosion of carbon steel was observed with sulfate reduction and methane producing activity in brackish medium with lactate as substrate. The next-generation sequencing technologies revealed microbial community varies greatly between environmental samples (inoculated sample) and cultured sample. Particularly, Desulfovibrio species and Clostridia class, that sulfate reducing ability have been reported, became dominant. Inhibition test of sulfate reducing bacteria and methane producing archaea suggested that sulfate reducing bacteria plays a major role for this corrosion, and methane producing archaea enhanced corrosion activity by the coexistence of sulfate reducing bacteria.