抄録
Flux pinning properties in high-temperature superconductors are significantly in fluenced by flux creep, especially at high temperatures and in high magnetic fields. One of the results of flux creep is an appreciable degradation of the maximum magnetic field for the non-resistive transport current from the upper critical field. This characteristic field, called the "irreversibility field", can be theoretically analyzed using the flux creep model. The important parameter that determines the creep phenomena is the pinning potential given by the product of the pinning energy density and the volume of the flux bundle. In this article, various dependencies of the irreversibility field on temperature, flux pinning strength anisotropy and size of the superconductor, and electric field at the time of measurement are reviewed according to the prediction of the flux creep model. These aspects are compared experimentally. An example of theoretical estimation of the irreversibility field is shown.