抄録
Medical protein such as monoclonal antibody or immunoglobulin is an important substance as a medicine for cancer. However, the separation system of this medical protein has a very low separation rate and the cost of the product is extremely high. We have successfully developed a high gradient magnetic separation system for medical protein using affinity magnetic nanobeads. The system shows very high separation efficiency and can save costs based on a large production rate compared to the current system. The system consists of a 3 T superconducting magnet cooled by a cryocooler, a magnetic filter made of magnetic metal fibers of approximately 30 μm diameter, a demagnetization circuit for the filter, and a circulation pump for the medical protein solution. The medical protein is immobilized to affinity magnetic nanobeads after agitation of the protein and nanobeads mixture, then the mixture flows through the system and the beads are trapped in the filters by a high gradient magnetic field. The trapped beads flow out of the system by the AC demagnetization of the filters using LC resonance circuits after magnet discharge. The test results show 98% of the magnetic nanobeads in pure water were captured and 94% of total beads were collected.