低温工学
Online ISSN : 1880-0408
Print ISSN : 0389-2441
ISSN-L : 0389-2441
極低温用負膨張コイルボビンの開発
高強度ポリエチレン繊維/アルミナ繊維系混合強化複合材料からなるパイプの弾性率及び熱歪特性
山中 淳彦鹿島 俊弘西嶋 茂宏高尾 智明竹尾 正勝
著者情報
ジャーナル フリー

2001 年 36 巻 9 号 p. 525-533

詳細
抄録

Hybrid composite pipes reinforced with high-strength polyethylene fiber (DF) and alumina fiber (AlF) were prepared to develop the coil bobbin for stable superconducting coils. The bobbin in which the circumferential thermal strain expands with cooling and in which the circumferential Young's modulus is large would be effective for stable coils. The unidirectional hybrid composite (ADFRP) showed 0 thermal expansion coefficient when the ratio between DF and AIF volume was 5/5 in fiber direction, and its Young's modulus was larger than that of DF reinforced plastic (DFRP) both in parallel and perpendicular to fiber direction. The circumferential and longitudinal Young's moduli of ADFRP pipe were larger than those of DFRP pipe. The average value of inner and outer circumferential thermal strains with cooling down showed 0 with a filament winding (FW) angle of 90deg when the ratio between DF and AIF volume (D/A) was 5/5. When D/A equals 5/5, the calculated thermal strain with cooling of the pipe showed good agreement with the average of observed inner and outer thermal strains. The circumferential thermal strain showed an expansion with a FW angle of 50-90deg, and an absolute value was smaller than those of DFRP. The inner and outer circumferential thermal strains were different. The difference decreased with an increase of the ratio inner diameter/thickness, and the differences were smaller than those of DFRP with a decrease of the degree of anisotropy of thermal expansion coefficients in UD-FRP. The experimental data were obtained to make it possible to devise a coil bobbin with negative thermal expansion coefficient by ADFRP.

著者関連情報
© 社団法人低温工学協会
前の記事 次の記事
feedback
Top