Journal of Disaster Research
Online ISSN : 1883-8030
Print ISSN : 1881-2473
ISSN-L : 1881-2473
Special Issue on Infrastructure Maintenance, Renovation and Management
Data Assimilation for Fatigue Life Assessment of RC Bridge Decks Coupled with Path-Integral-Mechanistic Model and Non-Destructive Inspection
Yasushi TanakaKoichi MaekawaTakuya MaeshimaIchiro IwakiTakahiro NishidaTomoki Shiotani
著者情報
ジャーナル オープンアクセス

2017 年 12 巻 3 号 p. 422-431

詳細
抄録

Remaining fatigue life of reinforced concrete (RC) slabs subjected to traveling wheel-type loads is estimated by data assimilation procedure, i.e., coupled life-span simulation with inspection data. Multi-scale analysis (MSA) with path-integral-mechanistic models is used for the platform of data assimilation on which the visual inspection of concrete cracking on the members’ surfaces and the acoustic emission tomography (AET) are numerically integrated. For investigating the applicability of the proposed data assimilation, the wheel running experiments of RC slabs was conducted. Both crack patterns (2D) and 3D-AET were measured over the fatigue life till failure. In the pseudo-cracking assimilation, observed cracks are converted to space-averaged surface strains and the internal strain fields are simply assumed by in-plane hypothesis. This pseudo-cracking assimilation brings about fair assessment of the transient maximum deflection, but the residual deformation was found to be overestimated. Another non-destructive inspection data applied in this assimilation is the 3D-AET associated with the acoustic wave velocity, which has much to do with stiffness of some control volume with and without cracking. The AET velocity is converted to the initial fracture parameter of un-cracked concrete based on the elasto-plastic and fracture model used. Although cracking is not explicitly taken into account unlike the pseudo-cracking method, the small number of load repetition automatically generates internal cracks over the volume of analysis domains, and the remaining life of the slabs inspected was successfully estimated.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2017 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JDR Official Site.
https://www.fujipress.jp/jdr/dr-about/
前の記事 次の記事
feedback
Top