Journal of Disaster Research
Online ISSN : 1883-8030
Print ISSN : 1881-2473
ISSN-L : 1881-2473
Special Issue on NIED Frontier Researches on Science and Technology for Disaster Risk Reduction and Resilience 2017
Three-Dimensional Seismic Velocity Structure Beneath Japanese Islands and Surroundings Based on NIED Seismic Networks Using both Inland and Offshore Events
Makoto MatsubaraHiroshi SatoKenji UehiraMasashi MochizukiToshihiko Kanazawa
著者情報
ジャーナル オープンアクセス

2017 年 12 巻 5 号 p. 844-857

詳細
抄録

Tomographic analysis of the seismic velocity structure beneath oceans has always been difficult because offshore events determined by onshore seismic networks have large uncertainties in depth. In order to use reliable event locations for our computations, we have developed a method to use the hypocentral depths determined by the NIED F-net with moment tensor solutions using long-period (20-50 s) waves from offshore events away from onshore seismic networks. We applied seismic tomographic method to events occurring between the years 2000 and 2015 to generate a tomographic image of the Japanese Islands and the surrounding using travel time data picked by the NIED Hi-net, hypocenteral information for onshore earthquakes from the Hi-net, and hypocenter information for offshore events from the F-net. The seismic velocity structure at depths of 30-50 km beneath the Pacific Ocean off the east coast of northeastern Japan and onshore Japan was clearly imaged using both onshore and offshore event date. The boundary between high and low P-wave velocities (Vp) is clearly seen at the Median Tectonic Line beneath southwestern Japan at depths of 10 and 20 km. We discuss how the high-Vp lower crust and low-Vp upper crust beneath central Japan and towards the Sea of Japan are responsible for the failed rift structures formed during the opening of the Sea of Japan. Due to consequent shortening, the crustal deformation has been concentrated along the failed rift zone. Resolution of shallow structures beneath the ocean is investigated using S-net data, confirming the possibility of imaging depths of 5-20 km. In future studies, application of S-net data will be useful in evaluating whether the failed rift structure, formed during the late Cretaceous to early Tertiary, continues towards the shallow regions beneath the Pacific Ocean.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2017 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JDR Official Site.
https://www.fujipress.jp/jdr/dr-about/
前の記事 次の記事
feedback
Top