Journal of Disaster Research
Online ISSN : 1883-8030
Print ISSN : 1881-2473
ISSN-L : 1881-2473
Special Issue on NIED Frontier Researches on Science and Technology for Disaster Risk Reduction and Resilience 2017
Assimilation Impact of Different GPS Analysis Methods on Precipitation Forecast: A Heavy Rainfall Case Study of Kani City, Gifu Prefecture on July 15, 2010
Shingo ShimizuSeiichi ShimadaKazuhisa Tsuboki
著者情報
ジャーナル オープンアクセス

2017 年 12 巻 5 号 p. 944-955

詳細
抄録

In this study, we examined variations in predicted precipitable water produced from different Global Positioning System (GPS) zenith delay methods, and assessed the corresponding difference in predicted rainfall after assimilating the obtained precipitable water data. Precipitable water data estimated from the GPS and three-dimensional horizontal wind velocity field derived from the X-band dual polarimetric radar were assimilated in CReSS and rainfall forecast experiments were conducted for the heavy rainfall system in Kani City, Gifu Prefecture on July 15, 2010. In the GPS analysis, a method to simultaneously estimate coordinates and zenith delay, i.e., the simultaneous estimation method, and a method to successively estimate coordinates and zenith delay, i.e., the successive estimation method, were used to estimate precipitable water. The differences generated from using predicted orbit data provided in pseudo-real time from the International GNSS (Global Navigation Satellite System) Service for geodynamics (IGS) versus precise orbit data released after a 10-day delay were examined. The change in precipitable water due to varying the analysis methods was larger than that due to the type of satellite orbit information. In the rainfall forecast experiments, those using the successive estimation method results had a better precision than those using the simultaneous estimation method results. Both methods that included data assimilation had higher rainfall forecast precisions than the forecast precision without precipitable water assimilation. Water vapor obtained from GPS analysis is accepted as important in rainfall forecasting, but the present study showed additional improvements can be attained from incorporating a zenith delay analysis method.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2017 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JDR Official Site.
https://www.fujipress.jp/jdr/dr-about/
前の記事 次の記事
feedback
Top