Journal of Disaster Research
Online ISSN : 1883-8030
Print ISSN : 1881-2473
ISSN-L : 1881-2473
Special Issue on NIED Frontier Researches on Science and Technology for Disaster Risk Reduction and Resilience 2017
Very Short Time Range Forecasting Using CReSS-3DVAR for a Meso-γ-Scale, Localized, Extremely Heavy Rainfall Event: Comparison with an Extrapolation-Based Nowcast
Ryohei KatoShingo ShimizuKen-ichi ShimoseKoyuru Iwanami
著者情報
ジャーナル オープンアクセス

2017 年 12 巻 5 号 p. 967-979

詳細
抄録

The forecast accuracy of a numerical weather prediction (NWP) model for a very short time range (≤1 h) for a meso-γ-scale (2–20 km) extremely heavy rainfall (MγExHR) event that caused flooding at the Shibuya railway station in Tokyo, Japan on 24 July 2015 was compared with that of an extrapolation-based nowcast (EXT). The NWP model used CReSS with 0.7 km horizontal grid spacing, and storm-scale data from dense observation networks (radars, lidars, and microwave radiometers) were assimilated using CReSS-3DVAR. The forecast accuracy of the heavy rainfall area (≥20 mm h-1), as a function of forecast time (FT), was investigated for the NWP model and EXT predictions using the fractions skill score (FSS) for various spatial scales of displacement error (L). These predictions were started 30 minutes before the onset of extremely heavy rainfall at Shibuya station. The FSS for L=1 km, i.e., grid-scale verification, showed NWP accuracy was lower than that of EXT before FT=40 min; however, NWP accuracy surpassed that of EXT from FT=45 to 60 min. This suggests the possibility of seamless, high-accuracy forecasts of heavy rainfall (≥20 mm h-1) associated with MγExHR events within a very short time range (≤1 h) by blending EXT and NWP outputs. The factors behind the fact that the NWP model predicted heavy rainfall area within the very short time range of ≤1 h more correctly than did EXT are also discussed. To enable this discussion of the factors, additional sensitivity experiments with a different assimilation method of radar reflectivity were performed. It was found that a moisture adjustment above the lifting condensation level using radar reflectivity was critical to the forecasting of heavy rainfall near Shibuya station after 25 min.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2017 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JDR Official Site.
https://www.fujipress.jp/jdr/dr-about/
前の記事 次の記事
feedback
Top