Journal of Disaster Research
Online ISSN : 1883-8030
Print ISSN : 1881-2473
ISSN-L : 1881-2473
Special Issue on Integrated Program for Next Generation Volcano Research and Human Resource Development Part 2
Muographic Observation of Density Variations in the Vicinity of Minami-Dake Crater of Sakurajima Volcano
László OláhHiroyuki K. M. TanakaGergő HamarDezső Varga
著者情報
ジャーナル 認証あり

2019 年 14 巻 5 号 p. 701-712

詳細
抄録

Muography is an innovative imaging technique used for inspecting and monitoring density-length variations of large-sized natural or human-made objects based on the measurement of the absorption rate of cosmic-ray muons. The first large-sized, high-resolution muography observatory based on Multi-Wire Proportional Chamber (MWPC) technology is being developed to monitor the mass density variations in the vicinity of Minami-dake crater of Sakurajima volcano. We found that the track rates provided by five ongoing tracking systems with a total surface area of 4 m2 are stable within ±3% from the backward direction, which demonstrates that the MWPC-based Muographic Observation System (MMOS) is applicable for the detection of average density variations above 2%, which is well below the practical limit of 5%. We quantified the time resolution of the designed muography observatory by modeling the muon flux across the volcano; the average density-length variation of 5 (10)% is expected to be detected within 5–20 (2–8) days at a 1σ (68%) confidence level (CL) with an MMOS orientation of 10.86° above the horizon. An automated analysis framework was developed as a data base for raw data reconstruction, analysis, and preparation, and which is accessible via web-server. We observed a more than 2σ CL decrease in average density across the West side of Crater A during the ongoing data collection period. The observed density decrease suggests that the amount of material has decreased inside Crater A due to the consecutive eruptions of Minami-dake during the data collection period from November 30, 2018 to January 11, 2019.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2019 Fuji Technology Press Ltd.
前の記事 次の記事
feedback
Top