Journal of Disaster Research
Online ISSN : 1883-8030
Print ISSN : 1881-2473
ISSN-L : 1881-2473
Special Issue on Future Volcano Research in Japan: Integrated Program for Next-Generation Volcano Research
Fracture Structures in and Around Hakone Volcano Revealed by Dense Seismic Observations
Ryou Honda Yuki AbeYohei YukutakeShin’ichi Sakai
著者情報
ジャーナル オープンアクセス

2022 年 17 巻 5 号 p. 663-669

詳細
抄録

Preexisting fracture systems, including old fissures, dikes, and microfractures in the caldera, are possibly used as channels for magma and hydrothermal fluid intrusions during an eruption. To reveal such a fracture system in the Hakone volcano, we used the fuzzy c-means method to perform clustering on S-wave splitting analysis results. The results show that the fracture system in the Hakone caldera can be divided into two clusters (A and B) or four clusters (A1, A2, B1, and B2). In the central cone vicinity, craters or dikes corresponding to the compressive axis of the regional stress field are dominant, whereas the fault systems with the best orientation to the regional stress field develop around the central cone. Cluster B1 can be explained by the northwest–southeast alignment of micro cracks or dikes corresponding to the direction of maximum horizontal pressure of the regional stress field. The others are likely explained by fault fracture zones, which have an optimal orientation for regional stress fields, or by the alignment of micro cracks affected by the local stress field. Cluster B2 suggests the existence of fracture zones of the Tanna and Hirayama fault systems, which cross the Hakone volcano from north to south. Clusters A1 and A2 are possibly explained by the conjugate system of B2. However, the alignment of micro cracks generated by the local stress field or old volcanic structures can also be a cause of the clusters.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2022 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JDR official website.
https://www.fujipress.jp/jdr/dr-about/#https://creativecommons.org/licenses/by-nd
前の記事 次の記事
feedback
Top