The Journal of General and Applied Microbiology
Online ISSN : 1349-8037
Print ISSN : 0022-1260
ISSN-L : 0022-1260
Full Papers
Suppressor mutants from MotB-D24E and MotS-D30E in the flagellar stator complex of Bacillus subtilis
Yuka TakahashiKotomi KoyamaMasahiro Ito
Author information
JOURNAL FREE ACCESS

2014 Volume 60 Issue 4 Pages 131-139

Details
Abstract

The bacterial flagellar motor is mainly energized by either a proton (H+) or sodium ion (Na+) motive force and the motor torque is generated by interaction at the rotor-stator interface. MotA/MotB-type stators use H+ as the coupling ion, whereas MotP/MotS- and PomA/PomB-type stators use Na+. Bacillus subtilis employs both H+-coupled MotA/MotB and Na+-coupled MotP/MotS stators, which contribute to the torque required for flagellar rotation. In Escherichia coli, there is a universally conserved Asp-32 residue of MotB that is critical for motility and is a predicted H+-binding site. In B. subtilis, the conserved aspartic acid residue corresponds to Asp-24 of MotB (MotB-D24) and Asp-30 of MotS (MotS-D30). Here we report the isolation of two mutants, MotB-D24E and MotS-D30E, which showed a non-motile and poorly motile phenotype, respectively. Up-motile mutants were spontaneously isolated from each mutant. We identified a suppressor mutation at MotB-T181A and MotP-L172P, respectively. Mutants MotB-T181A and MotP-L172P showed about 50% motility and a poorly motile phenotype compared to each wild type strain. These suppressor sites were suggested to indirectly affect the structure of the ion influx pathway.

Content from these authors
© 2014, Applied Microbiology, Molecular and Cellular Biosciences Research Foundation
Previous article Next article
feedback
Top