Journal of the Japan Institute of Energy
Online ISSN : 1882-6121
Print ISSN : 0916-8753
ISSN-L : 0916-8753
Original Paper
Effect of Arsenic and Selenium on Nickel in SOFC Anode Materials
Kazuhiro KUMABE Tomoki UCHIDAYusuke KIKUCHIHiroshi MORITOMI
Author information
JOURNAL FREE ACCESS

2018 Volume 97 Issue 9 Pages 274-283

Details
Abstract

The effect of arsenic and selenium in coal gasification gas on nickel in SOFC anode materials was investigated using a commercial thermodynamic equilibrium calculation software, batch reactor, and digital microscope. The thermodynamic equilibrium simulations of 0.5CO, 0.2H2, 0.04CO2, 0.26N2, 0.2H2O, 10Ni, and arsenic and/or selenium were carried out to result in forming NiAs as solid-phase species under the conditions more than 10 ppm arsenic, the equivalent amount of NiAs as solid-phase species and AsSe as gas-phase species under the conditions of 10-1000 ppm arsenic and selenium, and Ni7Se8 as solid-phase species under the conditions more than 1% selenium. The impedance of nickel wire with arsenic and selenium from 500 to 900 °C in the batch reactor was measured under simulated coal gasification gas (H2/N2 = 30/70 vol%) by a digital multi-meter to result in increasing the impedance with > 0.05 g arsenic and > 0.05 g selenium due to nickel corrosion. The reaction of nickel plate with arsenic and/or selenium to 900 °C in the batch reactor and digital microscope was performed under simulated coal gasification gas (CO/CO2/N2/H2 = 50.0/4.00/26.0/20.0 vol%) to result in the corrosion on the surface of nickel plate due to forming Ni5As2 and pumping nickel by arsenic.

Content from these authors
© 2018 The Japan Institute of Energy
Previous article
feedback
Top