バイオマス科学会議発表論文集
Online ISSN : 2423-8341
Print ISSN : 2423-8333
ISSN-L : 2423-8333
第20回バイオマス科学会議
会議情報

研究発表(口頭発表)
O-14 ガス化炉内クリンカの形成抑制に関する深層学習を用いた考察
小井土 賢二
著者情報
会議録・要旨集 フリー

p. 27-28

詳細
抄録

This study investigated modelling the relationship between the chemical composition of Japanese cedar ash and its fusion temperature using a neural network (NN) for the stable operation of small-scale biomass gasification combined heat and power (CHP) systems. The NN was trained on experimental data and demonstrated high accuracy in predicting ash fusion temperatures, excluding the softening point. Analysis confirmed that the CaCO3 and K2CO3 ratio has a significant impact on the melting point. Adjusting ash composition to achieve optimal ratios could effectively suppress slag formation and enhance the stability of system operation, with potential applicability to other tree species. These findings suggest that NN-based prediction models can serve as a valuable tool in optimising fuel composition.

著者関連情報
© 2024 一般社団法人 日本エネルギー学会
前の記事 次の記事
feedback
Top