日本航海学会論文集
Online ISSN : 2187-3275
Print ISSN : 0388-7405
ISSN-L : 0388-7405
ニューラルネットワークを用いた実海域における船舶推進性能の推定
石井 幹久庄司 るり武隈 克義
著者情報
ジャーナル フリー

2020 年 142 巻 p. 79-88

詳細
抄録

In recent years, on-board monitoring has been performed widely to estimate ship performance at actual sea. To analyse monitoring data, the authors tried to make estimation models which have high predictive power and high explanatory power. At first, the authors cleaned data using reconstruction error by autoencoder. Then, the authors made estimation models using 24 neural networks and bagging to predict SHP and log speed of 2 ships. Prediction error of test data is as follows. MAPE is 1-3%, RMSPE is 2-8%, R2 score is 0.96-0.99. Also, the authors confirmed estimation models can estimate ship’s performance in calm sea and effects of hull fouling, aging and disturbance due to wind and wave. It can be said that the method proposed in this paper is effective to make the estimation models with high predictive power and high explanatory power.

著者関連情報

この記事はクリエイティブ・コモンズ [表示 - 非営利 - 改変禁止 4.0 国際]ライセンスの下に提供されています。
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja
前の記事 次の記事
feedback
Top