日本金属学会誌
Online ISSN : 1880-6880
Print ISSN : 0021-4876
ISSN-L : 0021-4876
Ti-51 at%Ni形状記憶合金製薄板の予ひずみと中間温度熱処理が力学特性に及ぼす影響
岡部 永年仙波 浩雅山地 徹沖田 圭介山内 清
著者情報
ジャーナル フリー

2005 年 69 巻 8 号 p. 587-595

詳細
抄録

  Attempts have been made to develop new types of seismic devices using shape memory alloys. They are a single-stage bellows which are processed from thin-walled tubes by employing the rubber bulge method and then are annealed at 400°C for the shape-memory treatment. As strain distribution is induced on the bulged part due to the process, it is significant to know the effects of pre-strain and the subsequent heat-treatment on the mechanical properties of the material for tube when designing the bellows shapes for the seismic structures. Thus, tensile tests and thermal analysis were conducted before and after the heat treatment on rectangular specimens cut from the tubes.
   In this paper, the oxidization method was first attempted to observe distinctively both regions of the stress induced martensite (SIM) transformation and twin deformation generated while applying strain to the specimens. It became clear that the micro-structure in the SIM area had a changed R phase from the austenite phase at room temperature after being annealed at 400°C. From the experimental and analytical results for the specimens, the mechanical behavior was classified broadly into two conditions as follows: (1) the mechanical behavior can be formulated on the basis of a series-model consisting of areas of both R phase and austenite considering the area-ratio of these phases until the SIM transformation has expanded over the whole specimen, and (2) after that, the mechanical behavior can be formulated using the exponential function for the applied strain as a parameter.

著者関連情報
© 2005 (公社)日本金属学会
前の記事 次の記事
feedback
Top