日本金属学会誌
Online ISSN : 1880-6880
Print ISSN : 0021-4876
ISSN-L : 0021-4876
低圧環境下における超音速窒素プラズマジェットのプラズマ状態とそのチタン窒化への応用
田原 弘一吉川 孝雄
著者情報
ジャーナル フリー

1999 年 63 巻 1 号 p. 34-40

詳細
抄録

Spectroscopic measurements were carried out to understand the plasma feature inside and outside a direct-current nitrogen arcjet generator with a supersonic expansion nozzle. In the expansion nozzle, the plasma was in thermodynamical nonequilibrium because the pressure drastically decreased downstream, although the plasma in the throat was expected to be nearly in a temperature-equilibrium condition. The radial profiles of the physical properties showed that there existed a core flow with high vibrational and rotational temperatures and large electron number densities on the center axis, even at the nozzle exit. The vibrational temperature at the nozzle exit ranged from 6000 to 10000 K in input powers of 5-11 kW and the rotational temperature from 500 to 2000 K. In the exhaust flow, the temperatures and the electron density were approaching some values downstream. Nitriding of titanium was conducted using the nitrogen plasma jets under a low pressure environment below 3 kPa. Plasma was accelerated smoothly with an optimally designed supersonic expansion nozzle because a shock diamond was not observed in the plasma flame. Even under a low pressure below 3 kPa, a titanium nitride layer was constructed on the surface of a titanum sample by only 5-min plasma jet irradiation. Although nitride formation decreased with decreasing pressure at the center of the irradiated region, the nitrided area became larger.

著者関連情報
© 社団法人 日本金属学会
前の記事 次の記事
feedback
Top