人工知能
Online ISSN : 2435-8614
Print ISSN : 2188-2266
人工知能学会誌(1986~2013, Print ISSN:0912-8085)
リテラル連関とMDL基準による相対最小汎化の計算法
石川 孝寺野 隆雄沼尾 正行
著者情報
解説誌・一般情報誌 フリー

1999 年 14 巻 2 号 p. 326-333

詳細
抄録

This paper proposes a computation method of relative least general generalization using liteal association and MDL criteria in inductive inferene with a logical framework. The method does not require additional conditions, which are difncult to be described in KDD applications, to select relevant ground atoms from background knowledge. The notion literal association is a relationship among literals through common variables in the literals. The MDL criteria selects literals in the generalized clause by the description length of literals as a post-processing. The search using these properties is processed with constraints that the generalization covers no negative examples in top-down manner. The validity of the proposed method is shown by an experiment to learn list processing predicates from examples in logic programming traditions.

著者関連情報
© 1999 人工知能学会
前の記事 次の記事
feedback
Top