人工知能
Online ISSN : 2435-8614
Print ISSN : 2188-2266
人工知能学会誌(1986~2013, Print ISSN:0912-8085)
時系列モデルによる大量データからの情報抽出 : 地下水位データの解析(発見科学)
北川 源四郎松本 則夫
著者情報
解説誌・一般情報誌 フリー

2000 年 15 巻 4 号 p. 673-680

詳細
抄録

For automatic extraction of essential information and discovery from massive time series, it is necessary to develop a method which is flexible enough to handle actual phenomena in real world. That can be achieved by the use of state space model, and it provides us with a unified and computationally efficient filtering method and treating missing observations. As an example of successful applications of the method, analysis of groundwater level data is shown. It is shown that various discoveries are obtained from massive and noisy time series.

著者関連情報
© 2000 人工知能学会
前の記事 次の記事
feedback
Top