JOURNAL OF THE JAPAN STATISTICAL SOCIETY
Online ISSN : 1348-6365
Print ISSN : 1882-2754
ISSN-L : 1348-6365
Articles
ON MINIMAXITY OF SOME ORTHOGONALLY INVARIANT ESTIMATORS OF BIVARIATE NORMAL DISPERSION MATRIX
Yo Sheena
著者情報
ジャーナル フリー

2002 年 32 巻 2 号 p. 193-207

詳細
抄録
We consider an orthogonally invariant estimation of Σ of Wishart distribution using Stein’s loss (entropy loss) or a quadratic loss. In these problems the best lower triangular matrix invariant estimators are minimax estimators. Some orthogonally invariant estimators were derived from those minimax estimators. It is conjectured that they are also minimax estimators, but some estimators have not yet been proved to be minimax. In this paper we prove the minimaxity of some estimators when the dimension is two. We also present the necessary conditions for a class of estimators to be minimax when the dimension is two.
著者関連情報
© 2002 Japan Statistical Society
前の記事 次の記事
feedback
Top