Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
Stickelberger ideals of conductor p and their application
Humio IchimuraHiroki Sumida-Takahashi
著者情報
ジャーナル フリー

2006 年 58 巻 3 号 p. 885-902

詳細
抄録
Let p be an odd prime number and F a number field. Let K=Fp) and Δ=Gal(K/F). Let $¥mathscr{S}$Δ be the Stickelberger ideal of the group ring Z[Δ] defined in the previous paper [8]. As a consequence of a p-integer version of a theorem of McCulloh [15], [16], it follows that F has the Hilbert-Speiser type property for the rings of p-integers of elementary abelian extensions over F of exponent p if and only if the ideal $¥mathscr{S}$Δ annihilates the p-ideal class group of K. In this paper, we study some properties of the ideal $¥mathscr{S}$Δ, and check whether or not a subfield of Qp) satisfies the above property.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2006 The Mathematical Society of Japan
前の記事 次の記事
feedback
Top