Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
C1 subharmonicity of harmonic spans for certain discontinuously moving Riemann surfaces
Sachiko Hamano
著者情報
ジャーナル フリー

2013 年 65 巻 1 号 p. 321-341

詳細
抄録
We showed in [3] and [4] the variation formulas for Schiffer spans and harmonic spans of the moving domain D(t) in ℂz with parameter tB = {t ∈ ℂt : |t| < ρ}, respectively, such that each ∂D(t) consists of a finite number of Cω contours Cj(t) (j = 1 …, ν) in ℂz and each Cj(t) varies Cωsmoothly with tB. This implied that, if the total space $\mathcal{D}$ = ∪tB(t,D(t)) is pseudoconvex in B × ℂz, then the Schiffer span is logarithmically subharmonic and the harmonic span is subharmonic on B, respectively, so that we showed those applications. In this paper, we give the indispensable condition for generalizing these results to Stein manifolds. Precisely, we study the general variation under pseudoconvexity, i.e., the variation of domains $\mathcal{D}$: tBD(t) is pseudoconvex in B × ℂz but neither each ∂D(t) is smooth nor the variation is smooth for tB.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2013 The Mathematical Society of Japan
前の記事
feedback
Top