Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
Characterizing non-separable sigma-locally compact infinite-dimensional manifolds and its applications
Katsuhisa Koshino
著者情報
ジャーナル フリー

2014 年 66 巻 4 号 p. 1155-1189

詳細
抄録
For an infinite cardinal τ, let ℓ2f(τ) be the linear span of the canonical orthonormal basis of the Hilbert space ℓ2(τ) of weight = τ. In this paper, we give characterizations of topological manifolds modeled on ℓ2f(τ) and ℓ2f(τ) × Q, where Q = [−1,1] is the Hilbert cube. We denote the full simplicial complex of cardinality = τ and the hedgehog of weight = τ by Δ(τ) and J(τ), respectively. Using our characterization of ℓ2f(τ), we prove that both the metric polyhedron of Δ(τ) and the space
   J(τ)f = {xJ(τ) | x(n) = 0 except for finitely many n ∈ ℕ}
are homeomorphic to ℓ2f(τ).
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2014 The Mathematical Society of Japan
前の記事 次の記事
feedback
Top