Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
Harnack inequalities and local central limit theorem for the polynomial lower tail random conductance model
Omar BoukhadraTakashi KumagaiPierre Mathieu
著者情報
ジャーナル フリー

2015 年 67 巻 4 号 p. 1413-1448

詳細
抄録
We prove upper bounds on the transition probabilities of random walks with i.i.d. random conductances with a polynomial lower tail near 0. We consider both constant and variable speed models. Our estimates are sharp. As a consequence, we derive local central limit theorems, parabolic Harnack inequalities and Gaussian bounds for the heat kernel. Some of the arguments are robust and applicable for random walks on general graphs. Such results are stated under a general setting.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2015 The Mathematical Society of Japan
前の記事 次の記事
feedback
Top