Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
Conformal invariants defined by harmonic functions on Riemann surfaces
Hiroshige Shiga
著者情報
ジャーナル フリー

2016 年 68 巻 1 号 p. 441-458

詳細
抄録
In this paper, we consider conformal invariants defined by various spaces of harmonic functions on Riemann surfaces. The Harnack distance is a typical one. We give sharp inequalities comparing those invariants with the hyperbolic metric on the Riemann surface and we determine when equalities hold. We also describe the Harnack distance in terms of the Martin compactification and discuss some properties of the distance.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2016 The Mathematical Society of Japan
前の記事
feedback
Top