Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
Widths of highly excited resonances in multidimensional molecular predissociation
André MartinezVania Sordoni
著者情報
ジャーナル フリー

2020 年 72 巻 3 号 p. 687-730

詳細
抄録

We investigate the simple resonances of a 2 by 2 matrix of 𝑛-dimensional semiclassical Schrödinger operators that interact through a first order differential operator. We assume that one of the two (analytic) potentials admits a well with non empty interior, while the other one is non trapping and creates a barrier between the well and infinity. Under a condition on the resonant state inside the well, we find an optimal lower bound on the width of the resonance. The method of proof relies on Carleman estimates, microlocal propagation of the microsupport, and a refined study of a non involutive double characteristic problem in the framework of Sjöstrand's analytic microlocal theory.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2020 The Mathematical Society of Japan
前の記事 次の記事
feedback
Top