Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
Calabi–Yau structure and Bargmann type transformation on the Cayley projective plane
Kurando BabaKenro Furutani
著者情報
ジャーナル 認証あり

2022 年 74 巻 4 号 p. 1107-1168

詳細
抄録

Our purpose is to show the existence of a Calabi–Yau structure on the punctured cotangent bundle 𝑇*0(𝑃2𝕆) of the Cayley projective plane 𝑃2𝕆 and to construct a Bargmann type transformation from a space of holomorphic functions on 𝑇*0(𝑃2𝕆) to 𝐿2-space on 𝑃2𝕆. The space of holomorphic functions corresponds to the Fock space in the case of the original Bargmann transformation. A Kähler structure on 𝑇*0(𝑃2𝕆) was given by identifying it with a quadric in the complex space ℂ27 ∖{0} and the natural symplectic form of the cotangent bundle 𝑇*0(𝑃2𝕆) is expressed as a Kähler form. Our construction of the transformation is the pairing of polarizations, one is the natural Lagrangian foliation given by the projection map 𝒒 : 𝑇*0(𝑃2𝕆) → 𝑃2𝕆 and the other is the polarization given by the Kähler structure.

The transformation gives a quantization of the geodesic flow in terms of one parameter group of elliptic Fourier integral operators whose canonical relations are defined by the graph of the geodesic flow action at each time. It turns out that for the Cayley projective plane the results are not same with other cases of the original Bargmann transformation for Euclidean space, spheres and other projective spaces.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2022 The Mathematical Society of Japan
前の記事 次の記事
feedback
Top