Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
The 𝐿𝑝-boundedness of wave operators for two dimensional Schrödinger operators with threshold singularities
Kenji Yajima
著者情報
ジャーナル フリー

2022 年 74 巻 4 号 p. 1169-1217

詳細
抄録

We generalize the recent result of Erdoğan, Goldberg and Green on the 𝐿𝑝-boundedness of wave operators for two dimensional Schrödinger operators and prove that they are bounded in 𝐿𝑝(ℝ2) for all 1 < 𝑝 < ∞ if and only if the Schrödinger operator possesses no 𝑝-wave threshold resonances, viz. Schrödinger equation (−Δ + 𝑉(𝑥))𝑢(𝑥) = 0 possesses no solutions which satisfy 𝑢(𝑥) = (𝑎1 𝑥1 + 𝑎2 𝑥2) |𝑥|−2 + 𝑜(|𝑥|−1) as |𝑥| → ∞ for an (𝑎1, 𝑎2) ∈ ℝ2 ∖ {(0, 0)} and, otherwise, they are bounded in 𝐿𝑝(ℝ2) for 1 < 𝑝 ≤ 2 and unbounded for 2 < 𝑝 < ∞. We present also a new proof for the known part of the result.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2022 The Mathematical Society of Japan
前の記事 次の記事
feedback
Top