Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
Regularity of ends of zero mean curvature surfaces in 𝐑2,1
Naoya AndoKohei HamadaKaname HashimotoShin Kato
著者情報
ジャーナル 認証あり

2022 年 74 巻 4 号 p. 1295-1334

詳細
抄録

In this paper, we analyze ends of zero mean curvature surfaces of mixed (or non-mixed) type in the Lorentzian 3-space 𝐑2,1. Among these, we show that spacelike or timelike planar ends are 𝐶 in the compactification \hat{𝐿} of 𝐑2,1 as in the case of minimal surfaces in the Euclidean 3-space 𝐑3. On the other hand, lightlike planar ends are not 𝐶. Each lightlike planar end of a mixed type surface has the following additional parts: the converging part (a lightlike line in 𝐑2,1), the diverging part (the set of the points in \hat{𝐿} ∖ 𝐑2,1 corresponding to zero-divisors), and the border of these two parts. We show that such an end is 𝐶 on the first two parts almost everywhere, while there appears an isolated singularity in the form of (𝑥3, 𝑥𝜏 + “higher order terms”, 𝜏) on the border. We also show that conelike singularities of mixed type appear on the lightlike lines in special cases.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2022 The Mathematical Society of Japan
前の記事 次の記事
feedback
Top