2022 年 74 巻 4 号 p. 1295-1334
In this paper, we analyze ends of zero mean curvature surfaces of mixed (or non-mixed) type in the Lorentzian 3-space 𝐑2,1. Among these, we show that spacelike or timelike planar ends are 𝐶∞ in the compactification \hat{𝐿} of 𝐑2,1 as in the case of minimal surfaces in the Euclidean 3-space 𝐑3. On the other hand, lightlike planar ends are not 𝐶∞. Each lightlike planar end of a mixed type surface has the following additional parts: the converging part (a lightlike line in 𝐑2,1), the diverging part (the set of the points in \hat{𝐿} ∖ 𝐑2,1 corresponding to zero-divisors), and the border of these two parts. We show that such an end is 𝐶∞ on the first two parts almost everywhere, while there appears an isolated singularity in the form of (𝑥3, 𝑥𝜏 + “higher order terms”, 𝜏) on the border. We also show that conelike singularities of mixed type appear on the lightlike lines in special cases.
この記事は最新の被引用情報を取得できません。