訂正日: 2006/09/26訂正理由: -訂正箇所: 引用文献情報訂正内容: Right : 1) K. Nomizu, Lie groups and differential geometry, The Math. Soc. of Japan, 1956. 2) We have ∂/∂zi=∂/∂xi and √-1·∂/∂zi=∂/∂yi (1≤i≤n). 3) As for an exterior differential system, we adopt the definitions and notations given in M. Kuranishi, On E. Cartan's prolongation theorem of exterior differential systems, Amer. J. Math., 1957, Vol. LXXIX, no. 1. 5) and 6) δij=1(i=j),=0(i≠j).∂f/∂zi=1/2(∂f/∂xi-√-1∂f/∂yi) and ∂f/∂zi=1/2(∂f/∂xi+√-1∂f/∂yi). The functions of the right-hand side of (9.1) and of (9.2) should be evaluated at the Point of D with the coordinates: xi=xi(p), yi=yi(p) (1≤i≤n-1) and t=xn(p). 4) E. Cartan, Les systemes différentiels extérieurs et leurs applications géométriques,Paris, 1945. 7) We say that a hypersurf ace S satisfies the condition of Levi-Krzoska at a point p of S when we can find a regular local equation F=0 of S at p which satisfies the following condition: n∑i,j=1∂2F/∂zi∂zj(p)ξiξj>0 for arbitrary n complex numbers ξ1, …, ξn such that (ξ1, …, ξn)≠0 and n∑i=1∂F/∂zi(p)ξi=0. 8) _??_zωi means the Lie derivative of ωi with respect to the infinitesimal transformation Z. 9) A hypersurface S is called non-degenerate (resp. of index γ, resp. regular) if it is non-degenerate (resp. of index γ, resp. regular) everywhere. 10) By the trace we always mean the real one. 11) For a proof of this fact, see S. Kobayashi, Theory of connections, Annali. di, Math., 43 (1957), 119-194. [1] E. Cartan, Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes, I, Ann. Mat. Pura Appl., 11 (1932), 17-90. [2] E. Cartan, Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes, II, Ann. Scuola. Norm. Sup. Pisa, 1 (1932), 333-354. [3] E. Cartan, Les sous-groupes des groupes continus de transformations, Ann. Sci. Ecole Norm. Sup., 25 (1908), 57-194. [4] R. S. Palais, A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc., no. 22, 1957. [5] N. Tanaka, Conformal connections and conformal transformations, Trans. Amer. Math. Soc., 92 (1959), 168-190.