訂正日: 2006/09/29訂正理由: -訂正箇所: 論文タイトル訂正内容: Wrong : The Plancherel formula for SU(p, q) Right : The Plancherel formula for SU(p, q)
訂正日: 2006/09/29訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : 1) F. Bruhat, Sur les représentations induites des groupes de Lie, Bull. Soc. Math. France, 84 (1956), 97-205. 2) M. I. Graev, Unitary representations of real simple Lie groups (in Russian), Trudy Moskov. Mat. Obšc., 7 (1958), 335-389. 3) Harish-Chandra, (a) Representations of semisimple Lie groups. III, Trans. Amer. Math. Soc., 76 (1954), 234-253. (b) Representations of semisimple Lie groups. VI, Amer. J. Math., 78 (1956), 564-628. (c) A formula for semisimple Lie groups, Amer. J. Math., 79 (1957), 733-760. (d) Some results on an invariant integral on a semi-simple Lie algebra, Ann. of Math., 80 (1964), 551-593. (e) Invariant eigendistributions on a semisimple Lie group, Trans. Amer. Math. Soc., 119 (1965), 457-508. (f) Discrete series for semisimple Lie groups. II, Acta Math., 116 (1966), 1-111. (g) The Plancherel formula for complex semisimple Lie groups, Trans. Amer. Math. Soc., 76 (1954), 485-528. 4) T. Hirai, (a) The characters of irreducible representations of the Lorentz group of n-th order, Proc. Japan Acad., 41 (1965), 526-531. (b) The Plancherel formula for the Lorentz group of n-th order, Proc. Japan Acad., 42 (1966), 323-326. (c) Classification and the characters of irreducible representations of SU(p, 1), Proc. Japan Acad., 42 (1966), 907-912. (d) Invariant eigendistributions on real simple Lie groups. I, (to appear in Japan. J. Math.). (e) The characters of some induced representations of semisimple Lie groups, J. Math. Kyoto Univ., 8 (1968), 313-363. 5) K. Okamoto, On the Plancherel formula for some types of simple Lie groups, Osaka J. Math., 2 (1965), 247-282. 6) B. D. Romm, Analogy of the Plancherel formula for real unimodular group of n-th order (in Russian), Izv. Akad. Nauk SSSR, 29 (1965), 1147-1202. 7) M. Sugiura, Conjugate classes of Cartan subalgebras in real semisimple Lie algebras, J. Math. Soc. Japan, 11 (1959), 374-434. 8) R. Takahashi, Sur les fonctions sphériques et la formule de Plancherel dans le groupe hyperbolique, Japan. J. Math., 31 (1961), 55-90. 9) L. Pukanszky, (a) The Plancherel theorem of the 2×2 real unimodular group, Bull. Amer. Math. Soc., 69 (1963), 504-512. (b) The Plancherel formula for the universal covering group of SL(R, 2), Math. Ann., 156 (1964), 96-143.
Right : 1) F. Bruhat, Sur les représentations induites des groupes de Lie, Bull. Soc. Math. France, 84 (1956), 97-205. 2) M. I. Graev, Unitary representations of real simple Lie groups (in Russian), Trudy Moskov. Mat. Obšc., 7 (1958), 335-389. 3) Harish-Chandra, (a) Representations of semisimple Lie groups. III, Trans. Amer. Math. Soc., 76 (1954), 234-253. (b) Representations of semisimple Lie groups. VI, Amer. J. Math., 78 (1956), 564-628. (c) A formula for semisimple Lie groups, Amer. J. Math., 79 (1957), 733-760. (d) Some results on an invariant integral on a semi-simple Lie algebra, Ann. of Math., 80 (1964), 551-593. (e) Invariant eigendistributions on a semisimple Lie group, Trans. Amer. Math. Soc., 119 (1965), 457-508. (f) Discrete series for semisimple Lie groups. II, Acta Math., 116 (1966), 1-111. (g) The Plancherel formula for complex semisimple Lie groups, Trans. Amer. Math. Soc., 76 (1954), 485-528. 4) T. Hirai, (a) The characters of irreducible representations of the Lorentz group of n-th order, Proc. Japan Acad., 41 (1965), 526-531. (b) The Plancherel formula for the Lorentz group of n-th order, Proc. Japan Acad., 42 (1966), 323-326. (c) Classification and the characters of irreducible representations of SU(p,1), Proc. Japan Acad., 42 (1966), 907-912. (d) Invariant eigendistributions on real simple Lie groups. I, (to appear in Japan. J. Math.). (e) The characters of some induced representations of semisimple Lie groups, J. Math. Kyoto Univ., 8 (1968), 313-363. 5) K. Okamoto, On the Plancherel formula for some types of simple Lie groups, Osaka J. Math., 2 (1965), 247-282. 6) B. D. Romm, Analogy of the Plancherel formula for real unimodular group of n-th order (in Russian), Izv. Akad. Nauk SSSR, 29 (1965), 1147-1202. 7) M. Sugiura, Conjugate classes of Cartan subalgebras in real semisimple Lie algebras, J. Math. Soc. Japan, 11 (1959), 374-434. 8) R. Takahashi, Sur les fonctions sphériques et la formule de Plancherel dans le groupe hyperbolique, Japan. J. Math., 31 (1961), 55-90. 9) L. Pukanszky, (a) The Plancherel theorem of the 2×2 real unimodular group, Bull. Amer. Math. Soc., 69 (1963), 504-512. (b) The Plancherel formula for the universal covering group of SL(R,2), Math. Ann., 156 (1964), 96-143.