訂正日: 2006/09/29訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : 1) N. Dunford and J. T. Schwartz, Linear operators I, II, New York, 1958, 1963. 2) I. C. Gohberg and M. G. Krein, Introduction to the theory of linear nonselfad-joint operators, Moscow, 1965 (Russian). 3) P. Grisvard, Commutativité de deux foncteurs d'interpolation et applications, J. Math. Pures Appl., 45 (1966), 143-290. 4) S. Kwapien, Some remarks on (p, q)-absolutely summing operators in lp-spaces, Studia Math., 29 (1968), 327-337. 5) J. Lindenstrauss and A. Pelczynski, Absolutely summing operators in Lp-spaces and their applications, Studia Math., 29 (1968), 275-326. 6) J. L. Lions et J. Peetre, Sur une classe d'espaces d'interpolation, Publ. Math. de I. H. E. S., Paris, 19 (1964), 5-68. 7) B. Mitjagin and A. Pelczynski, Nuclear operators and approximative dimension, Proc. I. C. M., Moscow, (1966), 366-372. 8) K. Miyazaki, Some remarks on intermediate spaces, Bull. Kyushu Inst. Tech., 15 (1968), 1-23. 9) K. Miyazaki, Interpolation theory for Banach spaces of (p, q; r)-absolutely summing operators, to appear. 10) A. Pelczynski, A characterization of Hilbert-Schmidt operators, Studia Math., 28 (1967), 355-360. 11) A. Pietsch, Nukleare lokalkonvexe Räume, Berlin, 1965. 12) A. Pietsch, Absolut p-summierende Abbildungen in normierten Räumen, Studia Math., 28 (1967), 333-353. 13) A. Pietsch und H. Triebel, Interpolationstheorie für Banachideale von besch-ränkten linearen Operatoren, Studia Math., 29 (1968), 95-109. 14) H. Triebel, Über die Verteilung des Approximationszahlen kompakter Operatoren in Sobolev-Besov-Räumen, Invent. Math., 4 (1967), 275-293. 15) N. Tomczak, A remark on (s, t)-absolutely summing operators in Lp-spaces, Studia Math., 35 (1970), 97-100.
Right : [1] N. Dunford and J. T. Schwartz, Linear operators I, II, New York, 1958, 1963. [2] I. C. Gohberg and M. G. Krein, Introduction to the theory of linear nonselfad-joint operators, Moscow, 1965 (Russian). [3] P. Grisvard, Commutativité de deux foncteurs d'interpolation et applications, J. Math. Pures Appl., 45 (1966), 143-290. [4] S. Kwapien, Some remarks on (p, q)-absolutely summing operators in lp-spaces, Studia Math., 29 (1968), 327-337. [5] J. Lindenstrauss and A. Pelczynski, Absolutely summing operators in Lp-spaces and their applications, Studia Math., 29 (1968), 275-326. [6] J. L. Lions et J. Peetre, Sur une classe d'espaces d'interpolation, Publ. Math. de I. H. E. S., Paris, 19 (1964), 5-68. [7] B. Mitjagin and A. Pelczynski, Nuclear operators and approximative dimension, Proc. I. C. M., Moscow, (1966), 366-372. [8] K. Miyazaki, Some remarks on intermediate spaces, Bull. Kyushu Inst. Tech., 15 (1968), 1-23. [9] K. Miyazaki, Interpolation theory for Banach spaces of (p, q; r)-absolutely summing operators, to appear. [10] A. Pelczynski, A characterization of Hilbert-Schmidt operators, Studia Math., 28 (1967), 355-360. [11] A. Pietsch, Nukleare lokalkonvexe Räume, Berlin, 1965. [12] A. Pietsch, Absolut p-summierende Abbildungen in normierten Räumen, Studia Math., 28 (1967), 333-353. [13] A. Pietsch und H. Triebel, Interpolationstheorie für Banachideale von besch-ränkten linearen Operatoren, Studia Math., 29 (1968), 95-109. [14] H. Triebel, Über die Verteilung des Approximationszahlen kompakter Operatoren in Sobolev-Besov-Räumen, Invent. Math., 4 (1967), 275-293. [15] N. Tomczak, A remark on (s, t)-absolutely summing operators in Lp-spaces, Studia Math., 35 (1970), 97-100.