訂正日: 2006/09/29訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : 1) G. Glauberman, Central elements in core-free groups, J. Algebra, 4 (1966), 403-420. 2) D. Gorenstein, Finite groups, Harper and Row, New York, 1968. 3) D. Gorenstein and J. H. Walter, The characterization of finite groups with dihedral Sylow 2-subgroups, I, II, III, J. Algebra, 2 (1965), 85-151, 218-270, 334-393. 4) N. Ito, On doubly transitive groups of degree n and order 2(n-1)n, Nagoya Math. J., 27 (1966), 409-417. 5) W. M. Kantor, M. E. O'Nan and G. M. Seitz, 2-transitive groups in which the stabilizer of two points is cyclic (to appear). 6) H. Kimura, On some doubly transitive permutation groups of degree n and order 2l(n-1)n, J. Math. Soc. Japan, 22 (1970), 263-277. 7) H. Kimura, On doubly transitive permutation groups of degree n and order 2p(n-1)n, Osaka. J. Math., 7 (1970), 275-290. 8) H. Kimura, On some doubly transitive groups such that the stabilizer of two symbols is cyclic, J. Fac. Sci. Hokkaido Univ. (to appear). 9) H. Lüneburg, Charakterisierungen der endlichen desargusschen projektiven Ebenen, Math. Z., 85 (1964), 419-450. 10) H. Wielandt, Finite permutation groups, Academic Press, New York, 1964.
Right : [1] G. Glauberman, Central elements in core-free groups, J. Algebra, 4 (1966), 403-420. [2] D. Gorenstein, Finite groups, Harper and Row, New York, 1968. [3] D. Gorenstein and J. H. Walter, The characterization of finite groups with dihedral Sylow 2-subgroups, I, II, III, J. Algebra, 2 (1965), 85-151, 218-270, 334-393. [4] N. Ito, On doubly transitive groups of degree n and order 2(n-1)n, Nagoya Math. J., 27 (1966), 409-417. [5] W. M. Kantor, M. E. O'Nan and G. M. Seitz, 2-transitive groups in which the stabilizer of two points is cyclic (to appear). [6] H. Kimura, On some doubly transitive permutation groups of degree n and order 2l(n-1)n, J. Math. Soc. Japan, 22 (1970), 263-277. [7] H. Kimura, On doubly transitive permutation groups of degree n and order 2p(n-1)n, Osaka. J. Math., 7 (1970), 275-290. [8] H. Kimura, On some doubly transitive groups such that the stabilizer of two symbols is cyclic, J. Fac. Sci. Hokkaido Univ. (to appear). [9] H. Lüneburg, Charakterisierungen der endlichen desargusschen projektiven Ebenen, Math. Z., 85 (1964), 419-450. [10] H. Wielandt, Finite permutation groups, Academic Press, New York, 1964.