訂正日: 2006/09/29訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : 1) C. C. Chang, On unions of chains of models, Proc. Amer. Math. Soc., 10 (1959), 120-127. 2) S. Feferman, Lectures on Proof theory, Proceeding of the Summer School in Logic, Leeds, 1967, Lecture Notes in Mathematics, No. 70, Springer-Verlag, 1968, 1-107. 3) H. J. Keisler, Unions of relational systems, Proc. Amer. Math. Soc., 15 (1964), 540-545. 4) N. Motohashi, Object logic and Morphism logic, J. Math. Soc. Japan, 24 (1972), 683-697. 5) N. Motohashi, Interpolation theorem and characterization theorem, Ann. Japan Assoc. Philos. Sci., 4 (1972), 15-80. 6) N. Motohashi, Model theory in a positive second order logic with countable conjunctions and disjunctions, J. Math. Soc. Japan, 25 (1973), 27-42. 7) N. Motohashi, A faithful interpretation of Intuitionistic predicate logic in Classical predicate logic, Comment. Math. Univ. St. Pauli., 21 (2) (1973), 11-24. 8) B. F. Nebres, A syntactic characterization of infinitary sentences preserved under unions of models, Notices Amer. Math. Soc., 16 (1969), 423-424. 9) J. Weinstein, (ω1, ω)-properties of unions of models, in “the Syntax and Semanticsof Infinitary Languages”, edited by J. Barwise, Lecture notes in Math., No. 72, Springer-Verlag, 1968, 265-268.
Right : [1] C. C. Chang, On unions of chains of models, Proc. Amer. Math. Soc., 10 (1959), 120-127. [2] S. Feferman, Lectures on Proof theory, Proceeding of the Summer School in Logic, Leeds, 1967, Lecture Notes in Mathematics, No. 70, Springer-Verlag, 1968, 1-107. [3] H. J. Keisler, Unions of relational systems, Proc. Amer. Math. Soc., 15 (1964), 540-545. [4] N. Motohashi, Object logic and Morphism logic, J. Math. Soc. Japan, 24 (1972), 683-697. [5] N. Motohashi, Interpolation theorem and characterization theorem, Ann. Japan Assoc. Philos. Sci., 4 (1972), 15-80. [6] N. Motohashi, Model theory in a positive second order logic with countable conjunctions and disjunctions, J. Math. Soc. Japan, 25 (1973), 27-42. [7] N. Motohashi, A faithful interpretation of Intuitionistic predicate logic in Classical predicate logic, Comment. Math. Univ. St. Pauli., 21 (2) (1973), 11-24. [8] B. F. Nebres, A syntactic characterization of infinitary sentences preserved under unions of models, Notices Amer. Math. Soc., 16 (1969), 423-424. [9] J. Weinstein, (ω1, ω)-properties of unions of models, in “the Syntax and Semantics of Infinitary Languages”, edited by J. Barwise, Lecture notes in Math., No. 72, Springer-Verlag, 1968, 265-268.