訂正日: 2006/10/20訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : 1) M. Brelot, Étude des l'équation de la chaleur Δu=c(M)u(M), c(M)_??_0, au voisinage d'un point singulier du coefficient, Ann. Sci. École Norm. Sup., 48 (1931), 153-246. 2) C. Constantinescu and A. Cornea, Über einige Problem von M. Heins, Rev. Roumaine Math. Pures Appl., 4 (1959), 277-281. 3) C. Constantinescu and A. Cornea, Ideale Ränder Riemannscher Flächen, Springer, 1963. 4) K. Hayashi, Les solutions positives de l'équation Δu=Pu sur une surface de Riemann, Kodai Math. Sem. Rep., 13 (1961), 20-24. 5) M. Hems, Riemann surfaces of infinite genus, Ann. of Math., 55 (1952), 296-317. 6) S. Ito, On existence of Green function and positive superharmonic functions for linear elliptic operators of second order, J. Math. Soc. Japan, 16 (1964), 299-306. 7) S. Ito, Martin boundary for linear elliptic differential operator of second order in a manifold, J. Math. Soc. Japan, 16 (1964), 307-334. 8) O. Kellog, Foundations of Potential Theory, Frederick Ungar, 1929. 9) Z. Kuramochi, An example of a null-boundary Riemann surface, Osaka Math. J., 6 (1954), 83-91. 10) A. Lahtinen, On the solutions of Δu=Pu for acceptable densities on open Riemann surfaces, Ann. Acad. Sci. Fenn., 515 (1972). 11) A. Lahtinen, On the equation Δu=Pu and the classification of acceptable densities on Riemann surfaces, Ann. Acad. Sci. Fenn., 533 (1973). 12) A. Lahtinen, On the existence of singular solutions of Δu=Pu on Riemann surfaces, Ann. Acad. Sci. Fenn., 546 (1973). 13) R. Martin, Minimal positive harmonic functions, Trans. Amer. Math. Soc., 49 (1941), 137-172. 14) J. Milnor, Morse Theory, Ann. Math. Studies, 51 (1963). 15) C. Miranda, Partial differential Equations of Elliptic Type, Springer, 1970. 16) L. Myrberg, Über die Integration der Differentialgleichung Δu=c(P)u auf offenen Riemannschen Flächen, Math. Scand., 2 (1954), 142-152. 17) L. Myrberg, Über die Existenz der Greenschen Funktion der Gleichung Δu=c(P)u auf Riemannschen Flächen, Ann. Acad. Sci. Fenn., 170 (1954). 18) M. Nakai, The space of nonnegative solutions of the equation Δu=Pu on a Riemann surface, Kodai Math. Sem. Rep., 12 (1960), 151-178. 19) M. Nakai, Order comparisons on canonical isomorphisms, Nagoya Math. J., 50 (1973), 67-87. 20) M. Nakai, Martin boundary over an isolated singularity of rotation free density, J. Math. Soc. Japan, 26 (1974), 483-507. 21) M. Nakai, A test for Picard principle, Nagoya Math. J., 56 (1974), 105-119. 22) M. Nakai, A test of Picard principle for rotation free densities, J. Math. Soc. Japan, 27 (1975), 412-431. 23) M. Ozawa, Classification of Riemann surfaces, Kodai Math. Sem. Rep., 4 (1952), 63-76. 24) M. Ozawa, Some classes of positive solutions of Δu=Pu on Riemann surfaces, I, Kodai Math. Sem. Rep., 6 (1954), 121-126. 25) M. Ozawa, Some classes of positive solutions of Δu=Pu on Riemann surfaces, II, Kodai Math. Sem. Rep., 7 (1955), 15-20. 26) H. Royden, The equation Δu=Pu, and the classification of open Riemann surfaces, Ann. Acad. Sci. Fenn., 271 (1959). 27) I. Singer, Image set of reduction operator for Dirichlet finite solutions of Δu =Pu, Proc. Amer. Math. Soc., 32 (1972), 464-468. 28) I. Singer, Boundary isomorphism between Dirichlet finite solutions ofΔu=Pu and harmonic functions, Nagoya Math. J., 50 (1973), 7-20. 29) M. Šur, The Martin boundary for a linear elliptic second order operator, Izv. Akad. Nauk SSSR, 27 (1963), 45-60 (Russian). 30) M. Tsuji, Potential Theory in Moden Function Theory, Maruzen, 1959. 31) K. Yosida, Functional Analysis, Springer, 1965.
Right : [1] M. Brelot, Étude des l'équation de la chaleur Δu=c(M)u(M), c(M)≥0, au voisinage d'un point singulier du coefficient, Ann. Sci. École Norm. Sup., 48 (1931), 153-246. [2] C. Constantinescu and A. Cornea, Über einige Problem von M. Heins, Rev. Roumaine Math. Pures Appl., 4 (1959), 277-281. [3] C. Constantinescu and A. Cornea, Ideale Ränder Riemannscher Flächen, Springer, 1963. [4] K. Hayashi, Les solutions positives de l'équation Δu=Pu sur une surface de Riemann, Kodai Math. Sem. Rep., 13 (1961), 20-24. [5] M. Heins, Riemann surfaces of infinite genus, Ann. of Math., 55 (1952), 296-317. [6] S. Itô, On existence of Green function and positive superharmonic functions for linear elliptic operators of second order, J. Math. Soc. Japan, 16 (1964), 299-306. [7] S. Itô, Martin boundary for linear elliptic differential operator of second order in a manifold, J. Math. Soc. Japan, 16 (1964), 307-334. [8] O. Kellog, Foundations of Potential Theory, Frederick Ungar, 1929. [9] Z. Kuramochi, An example of a null-boundary Riemann surface, Osaka Math. J., 6 (1954), 83-91. [10] A. Lahtinen, On the solutions of Δu=Pu for acceptable densities on open Riemann surfaces, Ann. Acad. Sci. Fenn., 515 (1972). [11] A. Lahtinen, On the equation Δu=Pu and the classification of acceptable densities on Riemann surfaces, Ann. Acad. Sci. Fenn., 533 (1973). [12] A. Lahtinen, On the existence of singular solutions of Δu=Pu on Riemann surfaces, Ann. Acad. Sci. Fenn., 546 (1973). [13] R. Martin, Minimal positive harmonic functions, Trans. Amer. Math. Soc., 49 (1941), 137-172. [14] J. Milnor, Morse Theory, Ann. Math. Studies, 51 (1963). [15] C. Miranda, Partial differential Equations of Elliptic Type, Springer, 1970. [16] L. Myrberg, Über die Integration der Differentialgleichung Δu=c(P)u auf offenen Riemannschen Flächen, Math. Scand., 2 (1954), 142-152. [17] L. Myrberg, Über die Existenz der Greenschen Funktion der Gleichung Δu=c(P)u auf Riemannschen Flächen, Ann. Acad. Sci. Fenn., 170 (1954). [18] M. Nakai, The space of nonnegative solutions of the equation Δu=Pu on a Riemann surface, Kodai Math. Sem. Rep., 12 (1960), 151-178. [19] M. Nakai, Order comparisons on canonical isomorphisms, Nagoya Math. J., 50 (1973), 67-87. [20] M. Nakai, Martin boundary over an isolated singularity of rotation free density, J. Math. Soc. Japan, 26 (1974), 483-507. [21] M. Nakai, A test for Picard principle, Nagoya Math. J., 56 (1974), 105-119. [22] M. Nakai, A test of Picard principle for rotation free densities, J. Math. Soc. Japan, 27 (1975), 412-431. [23] M. Ozawa, Classification of Riemann surfaces, Kodai Math. Sem. Rep., 4 (1952), 63-76. [24] M. Ozawa, Some classes of positive solutions of Δu=Pu on Riemann surfaces, I, Kodai Math. Sem. Rep., 6 (1954), 121-126. [25] M. Ozawa, Some classes of positive solutions of Δu=Pu on Riemann surfaces, II, Kodai Math. Sem. Rep., 7 (1955), 15-20. [26] H. Royden, The equation Δu=Pu, and the classification of open Riemann surfaces, Ann. Acad. Sci. Fenn., 271 (1959). [27] I. Singer, Image set of reduction operator for Dirichlet finite solutions of Δu=Pu, Proc. Amer. Math. Soc., 32 (1972), 464-468. [28] I. Singer, Boundary isomorphism between Dirichlet finite solutions of Δu=Pu and harmonic functions, Nagoya Math. J., 50 (1973), 7-20. [29] M. Šur, The Martin boundary for a linear elliptic second order operator, Izv. Akad. Nauk SSSR, 27 (1963), 45-60 (Russian). [30] M. Tsuji, Potential Theory in Moden Function Theory, Maruzen, 1959. [31] K. Yosida, Functional Analysis, Springer, 1965.