訂正日: 2006/10/20訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : 1) E. W. Barnes, The genesis of the double gamma functions, Proc. London Math. Soc., 31 (1899), 358-381. 2) E. W. Barnes, The theory of the double gamma function, Philosophical Transactions of the Royal Society (A), 196 (1901), 265-388. 3) E. W. Barnes, On the theory of the multiple gamma function, Tran. Cambridge Philos. Soc., 19 (1904), 374-425. 4) M. Deuring, Die Klassenkörper der komplexen Multiplikation, Enzykl. der math. Wiss., Bd I. 2, 23, Teubner, 1958. 5) K. Ramachandra, Some applications of Kronecker's limit formulas, Ann. of Math., 80 (1964), 104-148. 6) T. Shintani, On evalution of zeta functions of totally real algebraic number fields at non-positive integers, J. Fac. Sci. Univ. Tokyo, Sec. IA, 23 (1976), 393-417. 7) T. Shintani, On a Kronecker limit formula for real quadratic fields, ibid. 24 (1977), 167-199. 8) T. Shintani, On certain ray class invariants of real quadratic fields, Proc. Japan Acad., 53 (1977), 128-131. 9) C. L. Siegel, Lectures on Advanced Analytic Number Theory, Tata Institute of Fundamental Research, Bombay, 1961. 10) H. M. Stark, L-Functions at s=1. III. Totally real fields and Hilbert's Twelfth Problem, Advances in Math., 22 (1976), 64-84. 11) H. M. Stark, Class fields for real quadratic fields and L series at 1, Proc. Durham Conference (1977), 355-374. 12) H. M. Stark, Hilbert's twelfth problem and L-series (preprint). 13) H. Weber, Lehrbuch der Algebra III. 14) E. Hecke, Zur Theorie der elliptische Modul Funktionen, Werke, 428-460.
Right : [1] E. W. Barnes, The genesis of the double gamma functions, Proc. London Math. Soc., 31 (1899), 358-381. [2] E. W. Barnes, The theory of the double gamma function, Philosophical Transactions of the Royal Society (A), 196 (1901), 265-388. [3] E. W. Barnes, On the theory of the multiple gamma function, Tran. Cambridge Philos. Soc., 19 (1904), 374-425. [4] M. Deuring, Die Klassenkörper der komplexen Multiplikation, Enzykl. der math. Wiss., Bd I. 2, 23, Teubner, 1958. [5] K. Ramachandra, Some applications of Kronecker's limit formulas, Ann. of Math., 80 (1964), 104-148. [6] T. Shintani, On evalution of zeta functions of totally real algebraic number fields at non-positive integers, J. Fac. Sci. Univ. Tokyo, Sec. IA, 23 (1976), 393-417. [7] T. Shintani, On a Kronecker limit formula for real quadratic fields, ibid. 24 (1977), 167-199. [8] T. Shintani, On certain ray class invariants of real quadratic fields, Proc. Japan Acad., 53 (1977), 128-131. [9] C. L. Siegel, Lectures on Advanced Analytic Number Theory, Tata Institute of Fundamental Research, Bombay, 1961. [11] H. M. Stark, Class fields for real quadratic fields and L series at 1, Proc. Durham Conference (1977), 355-374. [12] H. M. Stark, Hilbert's twelfth problem and L-series (preprint). [13] H. Weber, Lehrbuch der Algebra III. [14] E. Hecke, Zur Theorie der elliptische Modul Funktionen, Werke, 428-460.