訂正日: 2006/10/20訂正理由: -訂正箇所: 論文タイトル訂正内容: Wrong : Comparison theorems for Banach spaces of solutions of Δu=Pu on Riemann surfaces Right : Comparison theorems for Banach spaces of solutions of Δu=Pu on Riemann surfaces
訂正日: 2006/10/20訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : 1) M. Glasner Comparison theorems for bounded solutions of Δu=Pu, Trans. Amer. Math. Soc., 202 (1975), 173-179. 2) L.L. Helms Introduction to potential theory, Wiley-Interscience, New-York, 1969. 3) A. Lahtinen On the solutions of Δu=Pu for acceptable densities on open Riemann surfaces, Ann. Acad. Sci. Fenn. Ser. AI, No.515 (1972). 4) A. Lahtinen On the equation Δu=Pu and the classification of acceptable densities on Riemann surfaces, Ann. Acad. Sci. Fenn. Ser. AI, No. 533 (1973). 5) L. Myrberg Über die Integration der Differentialgleichung Δu=c(P)u auf offenen Riemannschen Flächen, Math. Scad., 2 (1954), 142-152. 6) L. Myrberg Über die Existenz der Greenschen Funktion der Gleichung Δu=c(P)u auf Riemannschen Flächen, Ann. Acad. Sci. Fenn. Ser. AI, No. 170 (1954). 7) L. Myrberg Über subelliptische Funktionen, Ann. Acad. Sci. Fenn. Ser. AI, No. 290 (1960). 8) L. Lumer-Naim Hp-spaces of harmonic functions, Ann. Inst. Fourier (Grenoble), 17 (1967), 425-469. 9) M. Nakai The space of bounded solutions of the equation Δu=Pu on a Riemann surface, Proc. Japan Acad., 36 (1960), 267-272. 10) M. Nakai The space of non-negative solutions of the equation Δu=Pu on a Riemann surface, Kodai Math. Sem. Rep., 12 (1960), 151-178. 11) M. Nakai Order comparisons on canonical isomorphisms, Nagoya Math. J., 50 (1973), 67-87. 12) M. Nakai Banach spaces of bounded solutions of Δu=Pu(P_??_0) on hyperbolic Riemann surfaces, Nagoya Math. J., 53 (1974), 141-155. 13) M. Parreau Sur les moyennes des fonctions harmoniques et analytiques et la classification des surfaces de Riemann, Ann. Inst. Fourier (Grenoble), 3 (1951), 103-197. 14) B. Rodin and L. Sario Principal functions, D. Van Nostrand Company, INC., Princeton, 1968. 15) H.L. Royden The equation Δu=Pu and the classifications of open Riemann surfaces, Ann. Acad. Fenn. Ser. AI, No. 271 (1959). 16) L. Sario and M. Nakai Classification theory of Riemann surfaces, Springer-Verlag, Berlin, 1970. 17) J.L. Schiff Isomorphisms between harmonic and P-harmonic Hardy spaces on Riemann surfaces, Pacific J. Math., 62 (1976), 551-560.
Right : [1] M. Glasner Comparison theorems for bounded solutions of Δu=Pu, Trans. Amer. Math. Soc., 202 (1975), 173-179. [1] L. L. Helms Introduction to potential theory, Wiley-Interscience, New-York, 1969. [1] A. Lahtinen On the solutions of Δu=Pu for acceptable densities on open Riemann surfaces, Ann. Acad. Sci. Fenn. Ser. AI, No. 515 (1972). [2] A. Lahtinen On the equation Δu=Pu and the classification of acceptable densities on Riemann surfaces, Ann. Acad. Sci. Fenn. Ser. AI, No. 533 (1973). [1] L. Myrberg Über die Integration der Differentialgleichung Δu=c(P)u auf offenen Riemannschen Flächen, Math. Scad., 2 (1954), 142-152. [2] L. Myrberg Über die Existenz der Greenschen Funktion der Gleichung Δu=c(P)u auf Riemannschen Flächen, Ann. Acad. Sci. Fenn. Ser. AI, No. 170 (1954). [3] L. Myrberg Über subelliptische Funktionen, Ann. Acad. Sci. Fenn. Ser. AI, No. 290 (1960). [1] L. Lumer-Naim Hp-spaces of harmonic functions, Ann. Inst. Fourier (Grenoble), 17 (1967), 425-469. [1] M. Nakai The space of bounded solutions of the equation Δu=Pu on a Riemann surface, Proc. Japan Acad., 36 (1960), 267-272. [2] M. Nakai The space of non-negative solutions of the equation Δu=Pu on a Riemann surface, Kodai Math. Sem. Rep., 12 (1960), 151-178. [3] M. Nakai Order comparisons on canonical isomorphisms, Nagoya Math. J., 50 (1973), 67-87. [4] M. Nakai Banach spaces of bounded solutions of Δu=Pu(P≥0) on hyperbolic Riemann surfaces, Nagoya Math. J., 53 (1974), 141-155. [1] M. Parreau Sur les moyennes des fonctions harmoniques et analytiques et la classification des surfaces de Riemann, Ann. Inst. Fourier (Grenoble), 3 (1951), 103-197. [1] B. Rodin and L. Sario Principal functions, D. Van Nostrand Company, INC., Princeton, 1968. [1] H. L. Royden The equation Δu=Pu and the classifications of open Riemann surfaces, Ann. Acad. Fenn. Ser. AI, No. 271 (1959). [1] L. Sario and M. Nakai Classification theory of Riemann surfaces, Springer-Verlag, Berlin, 1970. [1] J. L. Schiff Isomorphisms between harmonic and P-harmonic Hardy spaces on Riemann surfaces, Pacific J. Math., 62 (1976), 551-560.