訂正日: 2006/10/20訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : 1) T. Kato, Linear evolution equations of “hyperbolic” type, J. Fac. Sci. Univ. Tokyo, Sect. I, 17 (1970), 241-258. 2) T. Kato, Linear evolution equations of “hyperbolic” type II, J. Math. Soc. Japan, 25 (1973), 648-666. 3) T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Rational Mech. Anal., 58 (1975), 181-205. 4) J. R. Dorroh, A simplified proof of a theorem of Kato on linear evolution equations, J. Math. Soc. Japan, 27 (1975), 474-478. 5) E. Hille and R. S. Phillips, Functional analysis and semigroups, Amer. Math. Soc. Colloq. Publ. Vol. 31, Providence, 1957. 6) S. Ishii, Linear evolution equation du/dt+A(t)u=0: A case where A(t) is strongly continuous, to appear. 7) F. J. Massey III, Abstract evolution equations and the mixed problem for symmetric hyperbolic systems, Trans. Amer. Math. Soc., 168 (1972), 165-188. 8) K. Yosida, Time dependent evolution equations in a locally convex space, Math. Ann., 162 (1965), 83-86. 9) K. Yosida, Functional analysis, Springer, 1971.
Right : [1] T. Kato, Linear evolution equations of “hyperbolic” type, J. Fac. Sci. Univ. Tokyo, Sect. I, 17 (1970), 241-258. [2] T. Kato, Linear evolution equations of “hyperbolic” type II, J. Math. Soc. Japan, 25 (1973), 648-666. [3] T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Rational Mech. Anal., 58 (1975), 181-205. [4] J. R. Dorroh, A simplified proof of a theorem of Kato on linear evolution equations, J. Math. Soc. Japan, 27 (1975), 474-478. [5] E. Hille and R. S. Phillips, Functional analysis and semigroups, Amer. Math. Soc. Colloq. Publ. Vol. 31, Providence, 1957. [6] S. Ishii, Linear evolution equation du/dt+A(t)u=0: A case where A(t) is strongly continuous, to appear. [7] F. J. Massey III, Abstract evolution equations and the mixed problem for symmetric hyperbolic systems, Trans. Amer. Math. Soc., 168 (1972), 165-188. [8] K. Yosida, Time dependent evolution equations in a locally convex space, Math. Ann., 162 (1965), 83-86. [9] K. Yosida, Functional analysis, Springer, 1971.