訂正日: 2006/10/20訂正理由: -訂正箇所: 論文タイトル訂正内容: Wrong : A limit theorem for sums of random number of i.i.d. random variables and its application to occupation times of Markov chains Right : A limit theorem for sums of random number of i. i. d. random variables and its application to occupation times of Markov chains
訂正日: 2006/10/20訂正理由: -訂正箇所: 引用文献情報訂正内容: Wrong : 1) K. L. Chung, Contributions to the theory of Markov chains II, Trans. Amer. Math. Soc., 76 (1954), 397-419. 2) D. A. Darling, The influence of the maximum term in the addition of independent random variables, Trans. Amer. Math. Soc., 73 (1952), 95-107. 3) R. L. Dobrusin, Two limit theorems for the simplest random walk on a line, Uspehi Mat. Nauk, 10 no 3 (1955), 139-146. 4) W. Doeblin, Sur deux problèmes de M. Kolmogoroff concertant les chaines dénombrables, Bull. Soc. Math. France, 66 (1938), 210-220. 5) W. Feller, An introduction to probability theory and its applications, Vol. 2, 2nd ed., Wiley, New York, 1971. 6) Y. Kasahara, A limit theorem for slowly increasing occupation times, Ann. Probability, 10 (1982), 728-736. 7) Y. Kasahara, Another limit theorem for slowly increasing occupation times, J. Math. Kyoto Univ., 24 (1984), 507-520. 8) Y. Kasahara, Limit theorems for Lévy processes and Poisson point processes and their applications to Brownian excursions, J. Math. Kyoto Univ., 521-538. 9) Y. Kasahara, A note on sums and maxima of independent, identically distributed random variables, Proc. Japan Acad. Ser. A, 60 (1984), 353-356. 10) H. Kesten, Occupation times for Markov and semi-Markov chains, Trans. Amer. Math. Soc., 103 (1962), 82-112. 11) T. Lindvall, Weak convergence of probability measures and random functions in the function space D0, ∞), J. Appl. Probability, 10 (1973), 109-121. 12) F. Spitzer, Principles of random walk, D. Van Nostrand, Princeton, 1964. 13) S. I. Resnick, Inverses of extremal processes, Advances in Appl. Probability, 6 (1974), 392-406. 14) S. Watanabe, A limit theorem for sums of non-negative i.i.d. random variables with slowly varying tail probabilities, Proc. 5th International Conf. Multivariate Anal., 1980, 249-261.
Right : [1] K. L. Chung, Contributions to the theory of Markov chains II, Trans. Amer. Math. Soc., 76 (1954), 397-419. [2] D. A. Darling, The influence of the maximum term in the addition of independent random variables, Trans. Amer. Math. Soc., 73 (1952), 95-107. [3] R. L. Dobrusin, Two limit theorems for the simplest random walk on a line, Uspehi Mat. Nauk, 10 no 3 (1955), 139-146. [4] W. Doeblin, Sur deux problèmes de M. Kolmogoroff concertant les chaines dénombrables, Bull. Soc. Math. France, 66 (1938), 210-220. [5] W. Feller, An introduction to probability theory and its applications, Vol. 2, 2nd ed., Wiley, New York, 1971. [6] Y. Kasahara, A limit theorem for slowly increasing occupation times, Ann. Probability, 10 (1982), 728-736. [7] Y. Kasahara, Another limit theorem for slowly increasing occupation times, J. Math. Kyoto Univ., 24 (1984), 507-520. [8] Y. Kasahara, Limit theorems for Lévy processes and Poisson point processes and their applications to Brownian excursions, J. Math. Kyoto Univ., 521-538. [9] Y. Kasahara, A note on sums and maxima of independent, identically distributed random variables, Proc. Japan Acad. Ser. A, 60 (1984), 353-356. [10] H. Kesten, Occupation times for Markov and semi-Markov chains, Trans. Amer. Math. Soc., 103 (1962), 82-112. [11] T. Lindvall, Weak convergence of probability measures and random functions in the function space D[0,∞), J. Appl. Probability, 10 (1973), 109-121. [12] F. Spitzer, Principles of random walk, D. Van Nostrand, Princeton, 1964. [13] S. I. Resnick, Inverses of extremal processes, Advances in Appl. Probability, 6 (1974), 392-406. [14] S. Watanabe, A limit theorem for sums of non-negative i. i. d. random variables with slowly varying tail probabilities, Proc. 5th International Conf. Multivariate Anal., 1980, 249-261.